共查询到17条相似文献,搜索用时 46 毫秒
1.
提出一种改进的双精英协同进化遗传算法。在该算法中,种群被划分为两个精英小队,二者协同进化;精英是小队中的最优个体,并且两个小队的精英具有较高的差异度。精英分别与被选的个体进行交叉,增强了种群个体和全局最优解的亲和度;同时,当精英小队中的个体间的差异度下降到规定的预警值时,引入变异操作,有效地保持了种群的多样性,避免了早熟问题。算法中还给出一种δ-表现型多样性测度计算方法,使之可以对个体适应值为实数的群体多样性进行准确计算。针对参数多、大范围的复杂计算环境,算法的搜索能力明显提高。 相似文献
2.
传统的遗传算法(GA)在解决云资源调度问题时会随着问题规模的增大而出现早熟收敛、搜索效率低下、寻优能力差等现象.为了克服这些缺陷,提出一种基于多精英协同进化的遗传算法(MECGA).该算法通过多精英保留技术将适应度值大的个体选入精英子种群,通过与普通子种群进行协同交叉操作,可引导整个种群向最优解的方向移动;通过定义个体... 相似文献
3.
针对传统带精英策略的多目标进化算法种群收敛分布不够均匀,全局搜索能力不足的缺点,提出一种基于双精英种群的协同进化算法DEPEA(Double Elite Populations Co-evolutionary Algorithm)。该算法借鉴了子区间划分和非支配排序思想,将整个种群划分成两个不同级别的精英种群和一个普通种群;两个精英种群结合协同进化思想分别采用不同的进化策略实现对算法的探究和探查能力的平衡,高级别的精英种群与低级别的精英种群采用协作操作,促进更优秀的个体产生;高级别的精英种群与普通种群采用引导操作,加快普通个体向精英个体逼近。通过对五个标准的测试函数进行实验,并与传统的NSGA-II算法和最新的hybird_MOEA算法结果进行比较与分析,表明该算法不仅具有更好的全局收敛性,且能够更好地保证种群的多样性。 相似文献
4.
M-精英协同进化数值优化算法 总被引:1,自引:0,他引:1
为了解决高维无约束数值优化问题,借鉴协同进化和精英策略的思想,提出了M-精英协同进化算法.该算法认为,适应度较高的个体群(称为精英种群)在整个种群进化中起着主导作用.算法将整个种群划分为由M个精英组成的精英种群和由其余个体组成的普通种群这样两个子种群,依次以M个精英为核心(称为核心精英)来选择成员以组建M个团队.若选中的团队成员是其他精英,则该成员与核心精英利用所定义的协作操作来交换信息;若团队成员选自普通种群,则由核心精英对其进行引导操作.其中,协作操作和引导操作由若干不同类型的交叉或变异算子的组合所定义.理论分析证明,算法以概率1收敛于全局最优解.对15个标准测试函数进行的测试显示,该算法能够找到其中几乎所有被测函数的最优解或好的次优解.与3个已有的算法相比,在评价次数相同时,该算法所求解的精度更高.同时,该算法的运行时间较短,甚至略短于同等设置下的标准遗传算法.此外,对参数的实验分析显示,该算法对参数不敏感,易于使用. 相似文献
5.
针对差分进化算法在处理函数优化时存在的过早收敛和易陷入局部最优的问题,提出了一种基于精英种群策略的协同差分进化算法。在优化过程中,首先对种群进行适应度值评估和排序,提取前N个优秀个体组成精英种群,其余个体随机分为3个等大的子种群,每个子种群采取不同的进化策略,以此来保证种群的多样性;然后每隔一定代数,根据新的适应度值更新精英种群和其余3个子种群,这样可以有效地避免算法陷入局部最优;最后,将所提出的算法与4个先进的差分进化算法在CEC2014的30个标准测试函数上进行对比实验。实验结果表明,所提出的算法能够有效提高收敛速度,具有较高的收敛精度和较好的优化性能。 相似文献
6.
8.
为了获取更好的全局寻优性能,同时保持较快的收敛速度,文中结合精英策略、协同进化思想和模拟退火机制,提出了一种基于模拟退火机制的精英协同进化算法( SACEA)。算法维持三个种群:精英种群、普通种群和随机种群。精英个体组团,并和其他组员个体协作或对其引导来达到进化目的。 SACEA算法在精英组团过程中引入随机种群以增加种群多样性,同时随机个体和精英个体的合作采用快速模拟退火机制来实现,使算法获得了更好的全局寻优性。通过对15组标准测试函数的仿真,并和已有的算法进行对比,很容易得出:SACEA算法具有更强的全局寻优能力,同时收敛速度也有所提高。 相似文献
9.
一种多精英保存策略的遗传算法 总被引:4,自引:0,他引:4
根据种子到当前最优点的距离将种群分成两部分,小于或等于某一自适应距离值的种子归入当前最优种群,大于该距离值的次优种子形成次优种群集合。对此两个种群分别按照不同的进化策略协同进化并重组。通过界定最优种群边界来提高遗传算法局部搜索能力,通过对次优种群自适应变异,比较好地平衡种群的“选择压力”和“种群多样性”。数值结果表明了本方法的有效性和稳定性。 相似文献
10.
地域选取是基于GIS(Geographic Information System)的辅助决策系统的关键技术之一,多目标选取是其中的难点。协同进化遗传算法是传统遗传算法的改进,考虑了种群之间的相互作用。文中将协同进化遗传算法应用到了多目标地域选取中,采用了实数的染色体编码方式,改进了选择和变异算子。并在指挥所配置实验中运用该方法成功地解决了问题。 相似文献
11.
杨林根 《计算技术与自动化》2013,(4):61-64
为了避免演化算法过早收敛,保持种群多样性,增加算法的搜索能力,本文提出基于分级策略的演化算法.即通过对种群进行分级,来度量种群的多样性,衡量算法是否陷入局部最优,协调种群多样性和精英策略之间的矛盾,再根据种群分布的多样性设计一种有效的半一致交叉算子与单重均匀变异算子。 相似文献
12.
本文提出了一种带记忆信息的协同进化算法--将种群划分为一个子种群和多个独立的个体,协调算法的局部与全局搜索能力;独立个体中适应度最高的个体与子种群进行交叉与合并,实现种群内部的协作与更新;利用子种群内个体间的相似性,选择有代表性个体进行多次变异,发现有利于提高个体适应度的重要基因位来引导该子种群的变异行行为。实验表明,本文算法能够快速找到高精度的数值解,性能稳定且易于实现。 相似文献
13.
针对K-medoids算法易陷入局部最优和聚类结果不稳定的问题,提出了一种精英遗传K-medoids聚类算法。该算法使用精英策略来控制遗传操作的整体进化方向;根据种群的平均适应度引入若干随机个体来提高种群多样性,从而在一定程度上减少了遗传算法的早熟现象。为了提高进化效率,该算法设计出一种新的交叉方式;为了保证交叉变异结果的优秀性,该算法引入了一种竞争机制。8个数据集的仿真实验表明,该算法在提高聚类准确率的同时,聚类结果的稳定性也有所提高。 相似文献
14.
简单介绍遗传算法的基本理论,并以求解一个多峰函数最大值的最优解为例子,给出基本遗传算法的求解步骤,并借助Matlab进行仿真研究,验证基本遗传算法的求解效果;研究最佳保留机制和移民机制对遗传算法性能的改善,并进行仿真验证。 相似文献
15.
针对简单遗传算法(SGA)所存在的缺点和不足,提出了一种新的改进遗传算法一双变异算子GA.该算想法通过将所有产生的子代个体与父代个体混合作为下一代种群,在种群选择前对适应度值较低的个体进行一次变异,然后通过选择、交叉,再一次变异产生新种群,再利用自适应算法改变交叉和变异率及最优保存策略保护历代最优个体,利用matlab软件编程计算,在TSP中得到了较好的优化结果。实例说明,双变异算子的遗传算法能够最大限度使种群多样性,这样最有可能得到最优解,也易突破局部收敛的局限而达到全局最优。 相似文献
16.
在资源受限工作流系统中,任务的执行顺序和资源分配对工作流执行时间有很大影响.文中就此问题提出了一种新的方法,把工作流调度分为计划和执行两个阶段,先运用改进的遗传算法对工作流系统中的任务执行顺序和资源分配做好全局优化,然后再按照计划执行,达到执行时间最短的目的.实验结果表明,与动态工作流调度方法以及标准遗传算法比较,在相同工作流中,当存在并发执行的任务时,基于改进后的遗传算法的调度方法能够做到全局资源分配最优,使得整个工作流系统在执行时间方面最短. 相似文献
17.
介绍基于改进遗传算法的移动机器人路径规划,仿真结果证明该算法能够快速收敛到全局最优,对机器人工作空间的变化具有一定的适应能力。 相似文献