共查询到17条相似文献,搜索用时 62 毫秒
1.
旋转机械振动信号基于EMD的希尔伯特变换和小波变换时频分析比较 总被引:42,自引:21,他引:42
基于经验模态分解(Empirical Mode Decomposition,EMD)的希尔伯特变换(Hilbert Ttransformation,HT),是先把一列时间序列数据通过经验模态分解,然后经过希尔伯特变换获得频谱的信号处理新方法。介绍了该方法的理论和算法。对仿真和旋转机械油膜涡动故障振动信号分别用基于EMD的HT和基于小波变换(Wavelet Transformation,WT)的时频分析在时域、时频域和频域进行了比较研究,研究结果说明,旋转机械振动信号基于EMD的HT时频分析方法比基于WT的有效。 相似文献
2.
为准确诊断给水泵故障,更好满足其振动信号的非平稳和非线性特征,采用了更适合处理非平稳数据的HHT分析方法,对现场采集的信号进行HHT分析,在振动故障出现的早期就得到了明显的特征,使故障诊断更准确.结果表明,采用HHT分析方法优于FFT分析方法,可以更准确地诊断给水泵的故障. 相似文献
3.
针对滚动轴承工作环境复杂,轴承振动信号受噪声干扰难以提取故障特征以及传统故障诊断算法准确率较低的问题,提出了利用自适应噪声完备集合经验模态分解算法(CEEMDAN)联合卷积神经网络(CNN)内嵌长短期记忆神经网络(LSTM)的滚动轴承故障诊断方法。首先,利用CEEMDAN算法对轴承原始振动信号进行分解得到本征模态函数(IMF);然后计算重构后的信号的排列熵,归一化后作为特征向量;最后将特征向量输入至CNN-LSTM结合建立的深度学习模型中进行诊断识别。结果表明:所提方法具有更快的拟合速度和更高的准确率,平均故障诊断准确率达到98.63%。 相似文献
4.
针对具有容差的模拟电路故障诊断难题,提出了结合经验模态分解(EMD)和子带多态谱(SPS)的提取模拟电路故障特征新方法。首先计算出待测试电路的二阶Volterra核序列,然后用EMD对Volterra序列进行分解,获得本征模态函数(IMFs),最后通过计算IMFs的倒谱(CS)和Hiltert谱(HS),对时频域的多态数字故障特征进行提取,从而将容差模拟电路中的软故障和非线性故障进行分离,完成模拟电路故障诊断。实验结果表明,该方法能够有效地解决故障混叠难题,提升故障元件定位和分离的能力。 相似文献
5.
研究针对滚动轴承故障诊断中的类型和位置分析问题,提出了一种基于集合经验模态分解(EEMD)的声阵列滚动轴承故障诊断分析方法。以EEMD分解信号的峭度和能量作为评价指标,提取包含故障信息的IMF分解信号,根据滚动轴承理论故障频率及其倍频分析对分解信号进行窄带滤波后通过Hilbert包络谱实现故障类型判断,通过对窄带滤波后的分解信号使用声阵列技术进行声像分析实现滚动轴承故障定位分析。最后通过试验进行了方法验证,结果表明过使用基于EEMD分解的阵列分析方法,可更为直观确定故障位置和故障类型,有利于有轨机车等多轴承驱动系统轴承故障的快速和实时诊断,对于确定检修、制定合理维修决策、改进维修质量具有十分重要指导意义。 相似文献
6.
针对故障滚动轴承振动信号中含有干扰信号,难以准确提取出故障信息,提出了一种基于奇异值分解(SVD)、变分模态分解(VMD)、和支持向量机(SVM)的滚动轴承故障诊断方法。首先利用奇异值分解对信号进行处理,根据奇异值峰度差分谱来确定分解后重构矩阵的有效阶数,然后根据该有效阶数重构信号,对重构后的信号进行VMD分解,根据上述有效阶数确定分解的本征模态函数(IMF)分量的个数,从分解后的IMF分量中提取故障特征参数,将其作为支持向量机的输入参数进行故障诊断。最后采用合肥工业大学轴承试验机进行验证,并与直接进VMD分解及基于带通滤波器信号去噪的故障诊断方法进行对比,结果表明该方法能有效识别滚动轴承的故障类型,可用于滚动轴承故障诊断。 相似文献
7.
8.
本文提出一种改进的基于经验模态分解(EMD)的降噪方法,由小波包降噪、相关系数原理及选择不同消失矩的db系小波降噪与EMD分解结合在一起的改进方法,这种改进方法增强了对原始信号的降噪效果。并以齿轮箱为研究对象,对轴承外圈裂纹故障信号进行了诊断,获得很好的诊断效果。 相似文献
9.
针对强噪声下滚动轴承故障微弱,特征频率难以提取致使无法精准诊断故障的问题,提出了基于三分法经验模态分解融合Autogram阈值算法的故障诊断方法,在采用EMD对信号初步降噪时,提出一种基于M指标的三分法EMD将所有固有模态函数重构成三个分量(记M1,M2,M3),M2即为所需的故障分量;选用Autogram算法处理M2分量确定共振频带,对共振信号做阈值包络谱处理,得到3种阈值频谱,根据阈值谱中故障特征频率诊断滚动轴承故障类型。本文采用了仿真信号结合滚动轴承的内、外圈实测数据试验方法证明了该方法的有效性,实验结果证明该方法故障诊断率可达95%以上。 相似文献
10.
为全面、准确地诊断滚动轴承故障,提出一种基于多元变分模态分解(MVMD)和全矢包络谱的滚动轴承故障诊断方法.首先,采用正交采样技术获取滚动轴承同一支撑处互相垂直方向上的振动信号,将其组成一个二元调制振荡信号.然后,运用MVMD从二元调制振荡信号中提取一组最佳的二元调制振荡信号,其对应的带宽之和最小.由于MVMD运用统一数学模型对2个方向的信号建模,可确保故障特征被分解到同一层,便于后续的信息融合.最后,运用Hilbert变换对每个二元调制振荡信号解调得到相应的包络信号,利用全矢谱融合2个方向的包络信号信息以得到全矢包络谱,进而诊断滚动轴承故障.仿真和试验结果证明了所提方法的可行性和有效性. 相似文献
11.
提出了一种基于复局部均值分解(CLMD)和复信号包络谱(CSES)的滚动轴承故障诊断新方法。首先通过互相垂直安装的加速度传感器采集2个方向的振动信号,并将其组成一个复数信号;然后利用CLMD对二元复数信号进行自适应分解,将分解得到的复数信号的实部和虚部包络信号组成一个复包络信号,根据复傅里叶变换具有幅值增强和综合频率特性,直接对复包络信号进行复傅里叶变换,提取的故障特征频率更为清晰。通过滚动轴承不同位置的外圈故障实验,证明了所提方法能够实现故障特征增强,可用于诊断滚动轴承微弱故障和复合故障。 相似文献
12.
针对滚动轴承故障振动信号的非平稳特性和难以获得大量实际故障样本的情况,提出了一种基于经验模式(EMD)分解的新型故障特征撮方法,并与支持向量机(SVM)相结合实现滚动轴承的故障诊断.该方法首先将振动信号进行小波包降噪,再对去噪信号进行EMD分解,求解分解后各单元的瞬时能量变化,取瞬时能量变化的熵值组成特征向量,最后将其作为支持向量机的输入实现滚动轴承故障分类.经过实验验证,该方法能够有效的识别轴承正常状态、内圈故障、外圈故障以及滚珠故障. 相似文献
13.
针对非平稳状况滚动轴承振动信号易受速度波动、幅值或频率调制、噪声和其他无关分量的干扰,导致生成的时频面复
杂,难以识别滚动轴承故障特征频率等问题,提出一种新的基于自适应调频模式分解和脊检测相结合的方法。 所提出的方法构
建了高分辨率的时频表示,提升了诊断的准确度,而且具有非常强的自适应性。 通过对不同健康状况滚动轴承振动信号分析发
现,所提方法非常适合于变工况下的滚动轴承故障诊断,且诊断效果优于最新发展的时频分析方法。 相似文献
14.
针对滚动轴承早期故障特征微弱且难以有效辨识的问题,提出一种基于tSNE-ASC特征选择和DSmT融合决策的滚动轴承声振信号故障诊断方法。利用多个传感器采集轴承在不同故障模式下的声振信号,将每个信号通过VMD分解得到K个IMF分量;对各个IMF分量进行特征提取,构建各个特征的数据集矩阵;利用tSNE将各特征数据集矩阵降维至二维,计算平均轮廓系数(ASC);根据ASC大于临界值提取出声振故障信号的敏感特征;基于诊断模型实现轴承故障的初级诊断;利用DSmT将声振信号初级诊断结果进行融合决策,得出最终的诊断结论。实验结果表明:基于tSNE-ASC的特征选择方法能有效提取混合域特征中的敏感特征,在不同工况、不同诊断模型中均具有很高的诊断精度;DSmT决策融合有效降低了单一信号诊断的不确定性,在变载荷和升降速非平稳工况下均有很高的诊断精度。 相似文献
15.
针对复合插值包络经验模态分解(CIEEMD)方法存在非平稳系数阈值无法自适应确定的问题,提出了一种改进复合插值包络经验模态分解(ICIEEMD)方法。首先,以边长为ε的网格覆盖振动信号求出其分形盒维数,实现信号非平稳阈值自适应选取,分解得到若干固有模态函数(IMF);其次,结合互相关系数、时域峭度和包络谱峭度建立互相关系数-TE峭度(C-indexTE)复合指标,筛选出有效IMF分量并重构信号,使用Teager能量算子解调获得重构信号的能量谱,实现滚动轴承故障特征提取;最后,基于仿真信号和实验台滚动轴承数据集进行实验分析,与CIEEMD方法和谱峭度法相比,所提方法能够提取出更加清晰的故障特征频率,证明了所提方法的可行性和有效性。 相似文献
16.
为充分挖掘滚动轴承故障类别与振动信号间的潜在联系进而提升故障诊断精度,提出了一种基于尺度自适应卷积神经网络(SACNN)和改进门控循环单元(MGRU)混合模型的故障诊断方法.首先,提出了一种尺度自适应因子用以获取合适的CNN窗口尺寸从而更有效地提取振动信号中蕴含的局部故障信息,并在CNN中引入比例指数线性单元(SELU)以提升其训练过程的鲁棒性;随后,在GRU中嵌入SELU进一步提升网络稳定性,并改进GRU网络结构增强其时序特征的挖掘能力,进而更充分地提取局部故障信息中的时序特征;最后通过Softmax函数识别故障类别.经实验对比和分析表明,该方法具备较好的收敛性和稳定性,能够有效挖掘振动信号中蕴含的故障信息,准确识别不同转速下滚动轴承的故障类别且识别精度均高于99.5%,具有一定的应用价值. 相似文献
17.
盲源分离较之传统的信号处理方法在处理弱信号问题上更具优势。针对轴承故障诊断中因条件限制仅能进行单通道信号采集的情况,提出了一种基于总体经验模式分解的一维盲源分离算法。算法先通过总体经验模式分解将信号分解为多个本征模态函数,再根据本征模态函数之间的相关系数重组观测矩阵,最后利用近似联合对角化对矩阵进行盲源分离。通过数据仿真将该方法与小波分析和Hilbert-Huang变换作对比,说明该方法更适于处理低信噪比的轴承故障信号。对滚动轴承进行了故障诊断实验,成功找到了表征内圈故障和外圈故障的特征信息。 相似文献