共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
为了从视频序列中分割出完整的、一致的运动视频对象,该文使用基于模糊聚类的分割算法获得组成对象边界的像素,从而提取对象。该算法首先使用了当前帧以及之前一些帧的图像信息计算其在小波域中不同子带的运动特征,并根据这些运动特征构造了低分辨率图像的运动特征矢量集;然后,使用模糊C-均值聚类算法分离出图像中发生显著变化的像素,以此代替帧间差图像,并利用传统的变化检测方法获得对象变化检测模型,从而提取对象;同时,使用相继两帧之间的平均绝对差值大小确定计算当前帧运动特征所需帧的数量,保证提取视频对象的精确性。实验结果证明该方法对于分割各种图像序列中的视频对象是有效的。 相似文献
3.
为了减少图像目标在分割过程中受到噪声、复杂背景等因素的影响,将图像的多特征信息引入到图割算法中,提出了一种结合图像的多特征信息图割目标分割方法。该方法先选取像素点的多种图像特征组成特征向量,并对已做好标记的目标和背景种子点的特征向量分别进行FCM聚类,然后分别计算各像素点与这两类种子点的各聚类中心的最短欧式距离,并据此信息完成对能量函数的构造,最终运用最大流/最小割的方法得到图像分割的结果。其与传统图割算法相比,分割结果有了明显改善。实验结果表明,该算法具有有效性。 相似文献
4.
提出了基于运动纹理差异的运动目标分割无监督评价方法.通过基于贝叶斯决策的精确量化准则得到差分图像的类别映射图,利用区域生长方法产生不同效果的运动目标分割掩膜,定义了运动纹理差异的评价准则,并将该评价准则用于这些分割掩膜中以验证评价结果的有效性.为进一步准确衡量所提出准则的性能,在实验中将其与两种评价准则进行对比,一是有监督评价准则ME,二是基于彩色纹理的无监督评价方法JSEG中的无监督评价准则J.实验结果证明基于运动纹理差异的无监督评价与人类主观感知和客观实际基本一致,可有效地对红外视频运动目标分割性能进行无监督评价. 相似文献
5.
针对背景减法前景目标检测前期存在的“鬼影”,通过统计图像序列中各像素点处像素值的频次,高频次的像素值为背景像素,获得了无运动目标的背景,消除了“鬼影”;对于帧差法检测结果内部易产生“空洞”,在前景判断时增加了新的判决条件,改善了“空洞”问题;对于传统背景减法检测结果存在“拖影”问题,通过背景减法和改进帧差法的检测结果进行逻辑与操作,并将“与”结果作为背景图像更新判决条件。实验结果表明,该算法可以获得精确的背景图像,并且解决了“拖影”、“鬼影”及“空洞”问题,满足实时检测的需求。 相似文献
6.
复杂场景中的运动目标检测是计算机视觉领域的重要问题,其检测准确度仍然是一大挑战.本文提出并设计了一种用于复杂场景中运动目标检测的深度帧差卷积神经网络(Deep Difference Convolutional Neural Network,DFDCNN).DFDCNN由DifferenceNet和AppearanceNet组成,不需要后处理就可以预测分割前景像素.DifferenceNet具有孪生Encoder-Decoder结构,用于学习两个连续帧之间的变化,从输入(t帧和t+1帧)中获取时序信息;AppearanceNet用于从输入(t帧)中提取空间信息,并与时序信息融合;同时,通过多尺度特征图融合和逐步上采样来保留多尺度空间信息,以提高网络对小目标的敏感性.在公开标准数据集CDnet2014和I2R上的实验结果表明:DFDCNN不仅在动态背景、光照变化和阴影存在的复杂场景中具有更好的检测性能,而且在小目标存在的场景中也具有较好的检测效果. 相似文献
7.
针对野外复杂背景下红外运动车辆分割这一难题,提出了一种时空联合的运动目标分割算法.该算法首先通过自适应变化检测提取出初始目标,然后在初始目标外接矩形区域中做分水岭变换,最后通过基于初始目标模板投影和运动投影的区域合并,得到精确的目标.实验结果表明,该算法能快速精确地从复杂背景中分割出目标. 相似文献
8.
为了准确分割出视频场景中的运动对象,该文提出了一种基于边缘特征的运动对象分割及跟踪算法。首先对相邻帧进行自适应变化检测,得到相邻帧二值差分图像。结合当前帧Canny算子检测的边缘图像,获得运动对象的初始边缘模板。其次对运动对象的运动分为快变和慢变两部分进行跟踪并更新运动对象的边缘模板。最后对运动对象的边缘模板进行数学形态学处理得到运动对象的外轮廓,使用梯度向量流场作为外力的改进活动轮廓算法收缩获得运动对象准确的闭合轮廓曲线。该算法对运动对象的整体运动和局部形变都有很强的鲁棒性, 能够得到运动对象准确的轮廓,并且对复杂背景有很好的适应性。 相似文献
9.
10.
复杂背景下的运动目标分割技术是近年来多媒体通信技术的研究热点之一。文中提出一种基于SNAKE模型的运动目标分割技术。首先,利用运动检测的方法,从视频图像中粗略提取出运动目标;然后再利用SNAKE模型收敛到更为精确的物体边缘。模拟实验的结果表明,该方法对运动目标的提取有较好的分割效果。 相似文献
11.
12.
13.
针对大规模移动对象网络在构建图立方体的过程中产生的大量浓缩图,引入了图压缩的思想,提出了进一步压缩浓缩图的算法MC-compress,用来合并浓缩图中顶点和相应的边.通过将图中相邻的两个顶点进行合并,再比较两条边合并后权重的最大差异度,从而找出最优的合并顶点对,最终产生构建压缩图的超级顶点和超级边.通过压缩图结构,加快了在图立方体上查询图结构的显示过程,减少了构建图立方体过程中存储大量浓缩图的空间. 相似文献
14.
针对目前一些常用的运动目标跟踪算法存在跟踪精度不高、实时性低、对遮挡问题处理不佳等问题,提出一种粒子群算法与卡尔曼滤波相结合的新的运动目标跟踪方法。利用卡尔曼滤波预测目标中心在下一帧图像中的位置,从而极大减少了搜索范围,并以该位置为中心建立目标搜索区域。然后以目标的灰度统计特征对目标模板和候选区域进行匹配,确保跟踪准确性。为了有效减少搜索匹配次数、提高实时性,利用粒子群算法在搜索区域找到和目标模板最相似的区域,从而找到最优中心位置,并以该位置作为卡尔曼滤波的观测值,进行下一帧跟踪。仿真实验结果表明新算法显著提高了跟踪的实时性、精确性,并对部分遮挡能较好地处理。 相似文献
15.
基于快速EM算法的马尔可夫随机场模型运动目标自动分割 总被引:2,自引:2,他引:2
文章提出一种基于高斯马尔可夫随机场(GMRF)模型的运动目标自动分割算法。该算法采用高斯混合分布描述视频序列的差分图像,对标准Expectation—Maximization(EM)算法进行了改进,提出了快速EM算法。从不完整数据中估计出概率模型的参数。在此基础上建立马尔可夫随机场模型,构造系统能量函数。然后通过条件迭代模型(ICM)优化算法求解能量函数的最优解,得出标记场,提取出运动目标。实验结果证明,该算法对运动目标分割具有很好的分割效果。 相似文献
16.
基于分级自适应背景差分的运动目标检测 总被引:2,自引:0,他引:2
针对经典自适应背景差分法中存在的问题,提出一种基于分级自适应背景差分的运动检测方法.方法结合了帧间差分法和背景差分法的优点,解决了运动检测中常见的拖尾问题和空洞问题.利用识别信息对感兴趣目标单独使用更新系数进行更新,在快速跟踪背景变化的前提下,能够保持对感兴趣目标的持续关注. 相似文献
17.
为克服传统的运动目标检测算法容易受到显露遮挡,空洞以及噪声现象的影响,构造了一种基于MRF的自适应帧差运动目标检测算法。采用最大类间方差法自适应确定序列图像的初始标记场;通过帧差及“与”运算处理,消除伪运动信息;结合马尔可夫随机场理论构建了自适应马尔可夫随机场模型系统能量函数;并利用迭代条件模式算法完成标记场的优化过程,准确的提取出运动目标。实验结果表明,该算法能够有效地实现运动目标检测,效果理想。 相似文献
18.
提出了一种基于H.264压缩域的运动目标分割方法.首先从压缩流中提取运动矢量场,采用矢量中值滤波方法滤除运动场的噪声和非真实运动块;再运用前向估计方法进行矢量场的累积,解决了帧内预测时无运动矢量的问题;最后运用基于粒子群聚类算法对运动对象进行自适应分割.试验结果表明,该方法能有效分割出H.264压缩域的运动目标. 相似文献
19.
从医学图像中分割脑肿瘤区域可以为脑肿瘤的诊断以及放射治疗提供帮助.但肿瘤区域的变化异常且边界非常模糊,因此自动或半自动地分割脑肿瘤非常困难.针对这一问题,本文结合softmax回归和图割法提出一种脑肿瘤分割算法.首先融合多序列核磁共振图像(MRI)并标记训练样本,再用softmax回归训练模型参数并计算每个点属于各个类别的概率,最后将概率融入到图割法中,用最小切/最大流方法得到最终分割结果.实验表明提出的方法可以更好地得到脑肿瘤的边界,并能较准确地分割出脑肿瘤区域. 相似文献
20.
针对图像分割是典型的结构不良问题,将图谱划分理论作为一种新型的模式分析工具应用到图像分割并引起广大学者关注。考虑到现有的图谱阈值法中图权计算方法采用基于欧氏距离的幂指数函数导致其计算量过大的不足,首先采用基于欧氏距离的分式型柯西函数代替基于欧氏距离的幂指数函数提出图权计算的新方法,其次将其应用基于图谱划分测度的图像阈值分割算法中并得到一种改进的图谱阈值分割方法。实验结果表明,该方法的计算量小且对目标和背景相差比例较大的图像能获得满意的结果。 相似文献