首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pancake of Ti-43Al-9V-0.2Y (at.%) alloy with dimensions of ϕ480 mm × 46 mm was fabricated by pack-forging with a thick reduction of 80%. The as-forged Ti-43Al-9V-0.2Y alloy pancake has a duplex (DP) microstructure, which is composed of B2/α2/γ lamellar colonies and massive B2 and γ phase regions distributed along the boundaries between the lamellar colonies. Different microstructures were obtained by heat treatment of samples cut from the as-forged Ti-43Al-9V-0.2Y alloy pancake. A fully lamellar (FL) structure consisting of B2/α2/γ lamellar colonies was obtained after the heat treatment of 1350 °C/8 h. Tensile test results exhibited that the yield strength (YS) and ultimate tensile strength (UTS) of the alloy with DP microstructure were decreased from 680.7 MPa to 834.3 MPa at room temperature to 589.5 MPa and 693.1 MPa at 700 °C, respectively, and the elongation (δ) of the alloy with DP microstructure was increased from 1.99% at room temperature to 12.12% at 700 °C; the elongation (δ) of the alloy with FL microstructure was increased from 1.52% at room temperature to 85.84% at 800 °C.  相似文献   

2.
Ti-43Al-9V-Y alloy sheets with dimensions of 300 mm×100 mm×(1.5–2) mm were produced by hot-pack rolling. After rolling, the microstructure of Ti-43Al-9V-Y alloy sheet becomes near gamma(NG), which is comprised of γ+B2 phases. After heat treatment(HT) at 1 200−1 320 °C for 30 min followed by furnace cooling(FC), network shape structure of B2 phases in as-rolled microstructure is retained on the whole. Moreover, with increasing the HT temperature, precipitation of B2 phase lamellae in equiaxed γ grains is increased. Equiaxed γ grains transform partly to α2/γ/B2 lamellar structure after the heat treatment at 1 320 °C for 30 min. Tensile test results show that room-temperature yield strength(YS) and ultimate tensile strength(UTS) of the as-rolled material are 509 and 612 MPa, respectively. With the test temperature increasing, the YS and UTS of the as-rolled are decreased, but the elongation is improved. After HT at 1 200 °C, both yield strength and fracture strength of Ti-43Al-9V-Y alloy sheet are the lowest. With HT temperature increasing, fracture strength is increased obviously, but yield strength of the sheet after HT at 1 280 °C is the highest, about 869 MPa.  相似文献   

3.
Isothermal compression testing of Ti-22Al-25Nb alloy was carried out at deformation temperatures between 940 and 1060 °C with strain rate between 0.001 and 10 s−1, and a height reduction of 50%. The hot deformation behavior of Ti-22Al-25Nb alloy was characterized based on an analysis of the stress-strain behavior, kinetics and the processing map, for obtaining optimum processing windows and achieving desired microstructures during hot working. The constitutive equation was established, which described the flow stress as a function of the strain rate and deformation temperature. The apparent activation energies were calculated to be 788.77 kJ/mol in the α2 + β/B2 + O phase region and 436.23 kJ/mol in the α2 + B2 phase region, respectively. Based on Dynamic Material Model and the Murty instability criterion, the processing map for the Ti-22Al-25Nb alloy was constructed for strain of 0.6. The map exhibits a stable domain for the temperature range of 940-1060 °C and strain rate range of 0.001-0.1 s−1 with two peaks in power dissipation of 51 and 56%, occurring at 940 °C/0.001 s−1 and 1060 °C/0.001 s−1, respectively. One is associated with lamellar globularization, and the other displays a phenomenon of recrystallization. Therefore, the desired processing condition of the Ti-22Al-25Nb alloy is 940 °C/0.001 s−1 in the α2 + β/B2 + O phase field. Moreover, the material also undergoes flow instabilities at strain rates higher than 1 s−1. This instability domain exhibits flow localization and adiabatic shear bands which should be avoided during hot processing in order to obtain satisfactory properties.  相似文献   

4.
The processing characteristics, tensile properties, and oxidation response of two Nb-Ti-Al-Cr alloys were investigated. One creep test at 650 °C and 172 MPa was conducted on the base alloy, which contained 40Nb-40Ti-10Al-10Cr. A second alloy was modified with 0.11 at.% C and 0.07 at.% Y. Alloys were arc melted in a chamber backfilled with argon, drop cast into a water-cooled copper mold, and cold rolled to obtain a 0.8-mm sheet. The sheet was annealed at 1100 °C for 0.5 h. Longitudinal tensile specimens and oxidation specimens were obtained for both the base alloy and the modified alloy. Tensile properties were obtained for the base alloy at room temperature, 400,600,700,800,900, and 1000 °C and for the modified alloy at room temperature, 400,600,700, and 800 °C. Oxidation tests on the base alloy and modified alloy, as measured by weight change, were carried out at 600,700,800, and 900 °C. Both the base alloy and the modified alloy were extremely ductile and were cold rolled to the final sheet thickness of 0.8 mm without an intermediate anneal. The modified alloy exhibited some edge cracking during cold rolling. Both alloys recrystallized at the end of a 0.5-h annealing treatment. The alloys exhibited moderate strength and oxi-dation resistance below 600 °C, similar to the results of alloys reported in the literature. The addition of carbon produced almost no change in either the yield strength or ductility as measured by total elonga-tion. A small increase in the ultimate tensile strength and a corresponding decrease in the reduction of area below 600 °C were observed. Carbon addition also served to marginally refine the grain size after annealing. The results of this study and those of similar alloys reported in the literature suggest that 40Nb-40Ti-10Al-10Cr forms a good base alloy suitable for alloying for improvement in its oxidation and high-temperature strength properties.  相似文献   

5.
Al-8.4Si-20Cu-10Ge and mixed rare-earth elements (Re) containing Al-8.4Si-20Cu-10Ge-0.1Re filler metals were used for brazing of 6061 aluminum alloy/Ti-6Al-4V. The addition of 20 wt.% copper and 10 wt.% germanium into the Al-12Si filler metal lowered the solidus temperature from 586 °C to 489 °C and the liquidus temperature from 592 °C to 513 °C. The addition of 0.1 wt.% rare-earth elements into Al-8.4Si-20Cu-10Ge alloy caused remarkable Al-rich phase refinement and transformed the needle-like Al2Cu intermetallic compounds into block-like shapes. Shear strengths of the 6061 aluminum alloy/Ti-6Al-4V joints with the two brazing filler metals, Al-8.4Si-20Cu-10Ge and Al-8.4Si-20Cu-10Ge-0.1Re, varied insignificantly with brazing periods of 10-60 min. The average shear strength of the 6061 aluminum alloy/Ti-6Al-4V joints brazed with Al-8.4Si-20Cu-10Ge at 530 °C was about 20 MPa. Rare-earth elements appeared to improve the reaction of the Al-8.4Si-20Cu-10Ge filler metal with Ti-6Al-4V. The joint shear strength of the 6061 aluminum alloy/Ti-6Al-4V with Al-8.4Si-20Cu-10Ge-0.1Re reached about 51 MPa.  相似文献   

6.
In the current study, phase stability of Ti-Al-Mo-Nb alloys was investigated, and the effect of B addition was examined for cast alloys. The fabricated cast alloys were mainly composed of α2 / γ lamellar with a β phase, when they were heat treated at 1100 °C followed by air cooling, the alloy was composed of α2 / γ lamellar with γ+β necklace phase at the colony boundary for the Ti-45Al-3Mo-2Nb-1B alloy, and the colony size was refined to ~ 20 μm. In order to identify the effect of the microstructures on mechanical strength, compressive tests were performed on the fabricated alloys of Ti-45Al-3Mo-2Nb and Ti-45Al-3Mo-2Nb-1B at room temperature and at 800 °C. The microstructural variations and phase stability were discussed in terms of pseudo-binary phase diagram calculated by Pandat software?.  相似文献   

7.
系统研究了Ti-6Al-3Nb-2Zr-1Mo-x Ta(x=0,0.2,0.5,1.0,3.0,5.0)合金的微观组织、拉伸性能、夏比冲击韧性和耐海水腐蚀性。结果表明,经α+β两相区锻造后,Ti-6Al-3Nb-2Zr-1Mo-5Ta合金获得片层组织,Ti-6Al-3Nb-2Zr-1Mo-x Ta(x=0,0.2,0.5,1.0,3.0)均获得双态组织。XRD、TEM和选区电子衍射表明,在添加Ta元素后,Ti-6Al-3Nb-2Zr-1Mo-x Ta合金没有新相产生。对于双态组织Ti-6Al-3Nb-Zr-1M0-x Ta合金,随着Ta含量的增加,其Mo当量逐渐增加,导致其屈服强度、抗拉强度和显微硬度均有所提高。而Ta含量对冲击吸收功的影响规律与屈服强度和抗拉强度的影响规律相反,其大小与冲击断口剪切唇区面积一致。当Ta含量超过1.0%(质量分数)时,由于α和β相之间的标准平衡电位差逐渐增大,Ti-6Al-3Nb-2Zr-1Mo-x Ta合金的耐海水腐蚀逐渐降低。综合考虑强度、冲击韧性和耐海水腐蚀性能,Ti-6Al-3Nb-2Zr-1Mo-1Ta合金综合匹配性最好,具有良好的海洋工程应用潜力。  相似文献   

8.
Thermal expansion and lattice parameters are investigated up to 1100 °C for Ti-6Al-4V components, fabricated by shaped metal deposition. This is a novel additive layer manufacturing technique where near net-shape components are built by tungsten inert gas welding.The as-fabricated SMD Ti-6Al-4V components exhibit a constant coefficient of thermal expansion of 1.17 × 10−5 K−1 during heating up to 1100 °C, not reflecting the α to β phase transformation. During cooling a stalling of the contraction is observed starting at the β transus temperature. These high temperature experiments denude the α phase of V and enrich the β phase.The development of the lattice parameters in dependence on temperature are observed with high temperature X-ray diffraction. The unit cell volumes derived from these parameters are at room temperature larger for the α than for the β phase. With increasing temperature the unit cell volume of the β phase increases stronger than the one of the α phase resulting in a similar unit cell volume at the β transus temperature.These observations are interpreted as an indication for as-fabricated the SMD components being in a non-equilibrium state and reaching equilibrium during the slow heating and cooling during of the two different high temperature experiments.  相似文献   

9.
Powder metallurgical Ti-45Al-7Nb-0.3W (at.%) alloys were pack rolled at temperatures of 1240°C, 1255°C, 1270°C, and 1285°C. The microstructures were investigated by scanning electron microscopy (SEM) and transmission electron microscopy. The tensile properties were tested at room temperature and 800°C. After rolling, the sheets exhibited duplex microstructures with refined grains. The tensile test results showed the sheet rolled at 1270°C displayed excellent room temperature tensile properties with an ultimate tensile strength (UTS) of 782 MPa and an elongation of 1.95%. When tested at 800°C, all sheets showed UTS of over 600 MPa and elongations of around 50%. The dislocation movements and mechanical twinning played important roles at the initial stage of rolling deformation. However, during the subsequent deformation process, the deformation mechanism should mainly be the result of dynamic recrystallization.  相似文献   

10.
Al 6061- and Al 7108-SiCp composites (Al-PMMC) were prepared by stir-casting with SiCp size of 8 and 15 μm and volume fraction (Vf) of 0–20%. These composites were then subjected to successive hot rolling at 450 °C using a strain rate of 1 s−1 while the intermediate period of heating between each two successive rolling steps was 1 min to 1 h. Tensile test was conducted on the as-rolled composite strips with 3.0, 1.1 and 0.4 mm thicknesses using 81, 94 and 98% reductions, subsequently, with a tensile rate of 10 MPa s−1. Different tensile properties including ultimate tensile strength UTS, Young's modulus and elongation, were determined. The tensile behaviour was analysed in view of matrix alloy type and SiCp size and Vf. The effect of T6 treatment on the microstructure and tensile properties was also presented. Generally, successive hot rolling resulted in decreasing casting defects such as void and SiCp agglomeration present in the as-cast composites and hence enhanced mechanical properties were achieved. Almost 240 and 390% improvement in ultimate tensile strength (UTS) for 6061 and 7108 composite was obtained, respectively. The improvement in strength was remarkable for composites rolled to 0.4 mm. Annealing improved the elongation% at break of the 10–15% Vf composite more than 3 times. UTS of rolled composite was enhanced by T6 treatment at 176 °C and 120 °C for 6061 and 7108 composites. The effect of T6 treatment on the composite tensile behaviour was discussed.  相似文献   

11.
It was found that the dendritic microstructure of an as-cast alloy was changed to an almost equiaxed alloy after 480 min of annealing at 700 °C. The electrical conductivity of as-cast and hot rolled samples increased from 27.36 and 30.51% IACS to 30.67 and 32.1% IACS after 480 min of annealing at 700 °C. The dendritic microstructure and the electrical conductivity values of an as-cast alloy annealed for 60 min remained almost unchanged when the annealing temperature was increased to 800 °C. The hardness values of the samples that were hot rolled and annealed for 60 min were higher than those of the as-cast samples for all annealing temperatures. The electrical conductivity values of the hot rolled and as-cast samples were almost the same after annealing at 800 °C for 60 min. It was shown that after 20% cold work, the electrical conductivity value of the as-cast sample decreased from 30.5% IACS to 22.6% IACS. The electrical conductivity values of the samples were not significantly changed when the cold work was increased from 20% to 60%. The electrical conductivity values of the 20%, 40% and 60% cold worked samples increased from 22.62, 24.69 and 26.63 to 27.14,28.36 and 30.55% IACS, respectively, after 30 min annealing at 400 °C.  相似文献   

12.
Bearing rings produced in two different manufacturing chains have been investigated in terms of residual stress relaxation behavior during heating. Cold rolled rings present almost constant compressive residual stresses at the external periphery and completely affected cross sections. Machined rings show high tensile residual stress with periodic variations along the outer periphery caused by clamping during machining. Residual stress states then are confined in a very thin layer. With increasing temperature residual stresses relax. Machined rings present a progressive loss of the residual stress periodicity with increasing temperature. The cold rolled rings show a different relaxation behavior between surface and core. Complementary investigations revealed that recrystallization occurs at a higher temperature in the core compared to the surface. The surface of cold rolled rings and machined rings present a similar behavior: recovery processes induce a decrease of residual stresses at temperatures up to 500 °C and recrystallization starts above 500 °C which causes a complete residual stress relaxation. In the core of cold rolled rings, recovery processes are still active until 600 °C where recrystallization begins. However, residual stresses in the core are already completely relaxed at 600 °C.  相似文献   

13.
As the lightest structural metal, magnesium (Mg) is attracting increasing interest from both the industrial and academic fields. Magnesium alloy parts are mainly processed by die casting due to their poor sheet formability at room temperature. Warm forming is a popular method of forming; Mg alloy sheets produced in this manner show excellent formability around 200-400 °C. Electromagnetic forming (EMF) can improve the formability of metal sheets without the need for lubricants. In this paper, a new approach, called warm and electromagnetic hybrid forming (WEMF), is presented. The effects of voltage, capacity, and temperature on the bulging height of Mg alloy sheets are investigated. Results show that the bulging height of Mg sheets increases with moderate discharging energies. Enhancing the discharging voltage is also a more efficient method for increasing bulging height compared to simply increasing the capacity. When the discharging energy is kept constant, the bulging height first decreases (<150 °C) and then increases (>150 °C) from room temperature to 230 °C. The formability of Mg alloy sheets improves with increasing temperature, while the forming efficiency of WEMF decreases under similar conditions.  相似文献   

14.
This paper presents experimental investigations on influence of different coolant strategies such as dry, wet, minimum quantity lubrication (MQL) and MQL with cooling air on performance in milling of the Ti-6Al-4V alloy with uncoated cemented carbide inserts. Cutting force, tool wear, surface roughness and chip morphology are experimentally studied to compare the effects of different cooling air temperatures. The results showed that minimum quantity lubrication (MQL) with cooling air significantly reduces cutting force, tool wear and surface roughness. Unfortunately, MQL (without cooling air) condition cannot produce evident effect on cutting performance, and flaking wear on the flank surface of the insert has been found under this condition. Four different cooling air temperatures are used to investigate the effects of cooling air temperature on the machinability characteristics of Ti-6Al-4V alloy. Based on the experimental results, MQL with cooling air of −15 °C provides more favourable effects compared to other cooling air temperatures (0 °C, −30 °C,−45 °C). Short chips are produced under MQL with cooling air conditions due to the high velocity of cooling air enhances the chip brittleness for easy chip breaking, and the effective penetration of lubricant to the chip-tool interface results in lower friction. However, due to the dramatic increase in chip hardness at lower temperature, MQL with cooling air environments cannot promote chip curl to some extent.  相似文献   

15.
The effect of ageing on mechanical properties and microstructural characteristics of a precipitation hardenable Al 7075 alloy subjected to rolling at liquid nitrogen temperature and room temperature are has been investigated in the present work employing hardness measurements, tensile test, XRD, DSC, and TEM. The solution-treated bulk Al 7075 alloy was subjected to cryorolling and room temperature rolling to refine grain structures and subsequently ageing treatment to simultaneously improve the strength and ductility. The solution treatment combined with cryorolling up to a true rolling strain of 2.3 followed by low temperature ageing at 100 °C for 45 h has been found to be the optimum processing condition to obtain fine grained microstructure with improved tensile strength (642 MPa) and good tensile ductility (9.5%) in the Al 7075 alloy. The combined effect of suppression of dynamic recovery, partial grain refinement, partial recovery, solid solution strengthening, dislocation hardening, and precipitation hardening are responsible for the significant improvement strength-ductility combination in the cryorolled Al 7075 alloy subjected to peak ageing treatment. The cryorolled and room temperature rolled Al 7075 alloy, upon subjecting to peak ageing treatment, have shown higher strength and ductility in the former than the latter. It is due to presence of high density of nanosized precipitates in the peak aged cryorolled sample.  相似文献   

16.
Understanding the effect of nitrogen content on the crack growth rate (CGR) due to intergranular stress corrosion cracking (IGSCC) in high temperature (288 °C) pure water, in non-sensitised and strain-hardened stainless steel (SS) type 304 LN was the focus of this study. Non-sensitised SS containing two different levels of nitrogen (0.08 and 0.16 wt.%) in the solution annealed condition was strain-hardened by cross-rolling at 200 °C (warm rolling). It has earlier been reported that SS with a higher nitrogen level in the warm rolled condition has a higher CGR in high temperature pure water. Tensile testing was carried out using both the SS in the warm rolled as well as in the solution annealed condition at 288 °C. Samples were prepared for transmission electron microscopy (TEM) from the warm rolled SS and from the tensile tested (at 288 °C) specimens. TEM studies indicated that twinning and shear band formation were the major modes of deformation due to rolling at 200 °C and these feature were observed to terminate at grain boundaries, leading to regions of higher strain and stresses at grain boundaries. Higher nitrogen SS has higher grain boundary strain and stresses making the grain boundary regions more susceptible to IGSCC, resulting in higher CGR values. At 288 °C dislocation entanglement and cross-slip were the predominant modes of deformation.  相似文献   

17.
This work aims to understand a SCC failure mode of thermally treated steam generator tubing materials in high temperature water containing lead. The effect of lead contents on the anodic polarization curves of alloy 600 (UNS NO6600) and alloy 690 (UNS NO6900) has been studied in a solution of pH 10 at 200 °C and 315 °C. Lead increased the active peaks of alloy 600 and alloy 690 in mild alkaline water at high temperatures. A reduction of PbO to a metallic lead in alloy 690 is easier than that of alloy 600. When lead was added into the solution, a relative ratio of Cr from among the main metallic elements (Cr, Fe, and Ni) of alloy 600 and alloy 690 decreased in the outer corrosion film. Alloy 690 TT showed a transgranular stress corrosion cracking (TGSCC) in a 10 M NaOH solution with 5000 ppm of lead. Intergranular stress corrosion racking (IGSCC) was observed in the 100 ppm lead condition, and some TGSCC was detected on the fracture surface of the alloy 600 MA cracked in the 10,000 ppm lead solution. IGSCC seemed to be retarded by a crack blunting around the grain boundaries, and the TG cracking mode of the thermally treated alloy 600 and 690 seemed to be related to a crack blunting at the grain boundary carbide and a film dissolution by lead in an alkaline solution.  相似文献   

18.
This study examined the effects of the speed and force in centrifugal casting on the wedge castability of Ti-5 mass%Cu (Ti-5Cu) alloy and commercially pure titanium (CP-Ti). The Ti-5Cu alloy was prepared by argon-arc melting. Whole wedge-shaped acrylic patterns were prepared with either 15° or 30° angles and invested with a MgO-based material. The wedge specimens were cast using a centrifugal casting machine at rotational speeds of 600, 1000, 1250, 1500 and 3000 rpm. Mold filling, an index for a measure of castability, was determined as the missing length between the edge of the cast wedge and the theoretical acute tip of the triangle. CP-Ti was used as a control. An analytical model was developed to relate the mold-filling index to the surface energy and rotational speed. The experimental results indicate that the means of the mold-filling index of the 30° wedge angle were lower than those of the 15° wedge angle when compared for each corresponding metal and rotational speed. In each angle for CP-Ti, the means tended to reduce with increase in the rotational speed. The mold-filling index of 5% Cu titanium was found to be similar to that of CP-Ti, even for 15° wedge when the rotational speed was higher than 1250 rpm. The results suggest that dental prosthesis, which has narrow cross sections containing very narrow regions (for example, clasps of a denture), can be cast successfully by utilizing high rotational speed during centrifugal casting. The complex dependence of mold-filling index on wedge angle and rotational speed is explained on the basis of the analytical model and the dependence of the apparent surface energy on rotation speed.  相似文献   

19.
The influence of a thin 80Ni-20Cr (at.%) protective coating on the cyclic oxidation of a Ti-24Al-11Nb (at.%) alloy based on Ti3Al at 600 and 900 °C in air was investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results of the oxidation tests showed that deposited Ni-Cr layer provides an improved oxidation resistance due to the formation of protective oxide scale which barriers the outward Ti diffusion into the scale. In some extent surface formation of the nitride layer also prevents diffusion of alloying elements from the matrix. Although oxidation at 900 °C is faster than that at 600 °C, a remarkable reduction in mass gain of the alloy with protective coating was observed. The thickness of oxide scale on the coated samples is approximately two times less than that formed on the uncoated samples treated under the same exposure conditions (120 h).  相似文献   

20.
The results of investigation on oxidation wear mechanism of Ti-46Al-7Nb-0.7Cr-0.1Si-0.2Ni-based intermetallic alloy are presented. Oxidation was carried out in air at temperatures: 900 °C, 925 °C and 975 °C taking into account the micro-geometry of surfaces being heated and oxidized. It was determined that the rise of surface roughness to Ra = 5.8 μm definitely reduces scale of chipping in higher temperature (975 °C). Investigation of the material structure of the specimen and chemical composition of oxidation products was performed. Possibilities of an increase in the heat resistance of the tested alloy by means of application of high roughness surfaces were shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号