首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
柠檬热风干燥特性及数学模型   总被引:1,自引:0,他引:1  
黄艳斌  郑优  陈海桥  李颖  陈厚荣 《食品工业科技》2012,33(14):169-172,191
以新鲜柠檬为原料,研究其热风干燥特性及数学模型。以柠檬片厚度、热风温度、热风风速为因素,分析其对柠檬热风干燥特性的影响,建立柠檬热风干燥的干燥特性曲线、干燥速率曲线,并利用SAS8.0软件对试验数据进行拟合,构建柠檬热风干燥数学模型。结果表明:热风温度、柠檬片厚度对柠檬热风干燥的速率有较大影响,而热风风速对干燥速率的影响较小;柠檬热风干燥符合Page模型。  相似文献   

2.
红瓜子薄层热风干燥特性及其动力学研究   总被引:1,自引:0,他引:1  
研究不同温度条件下红瓜子薄层热风干燥特性,并建立定量描述红瓜子热风干燥特性规律的动力学数学模型。结果表明:红瓜子热风干燥过程分为加速干燥和减速干燥2个阶段,大部分处于减速阶段;温度对红瓜子的干燥特性有重要的影响,随着温度升高,干燥时间缩短,干燥速率提高;不同干燥温度下红瓜子热风干燥符合单项扩散模型,其中A、k与干燥温度为二次方程式关系,相关系数R2分别为0.994,0.980。  相似文献   

3.
利用热风干燥试验装置对菊花脑的热风干燥特性进行研究,探讨不同热风温度(T)、热风相对湿度(φ)对干燥速率的影响,热风温度是影响干燥速率的主要因素。利用3种不同干燥速率模型对试验数据进行拟合,发现菊花脑热风干燥符合指数模型MR=exp(-kt),其中k=0.0922T-9.83φ。  相似文献   

4.
杏鲍菇的热风干燥特性与动力学模型   总被引:2,自引:1,他引:1       下载免费PDF全文
研究了杏鲍菇在不同热风温度、风速、物料尺寸、物料堆积层数等条件下的热风干燥特性,并建立热风干燥数学模型。试验表明:热风温度、风速、物料尺寸和物料堆积层数均显著影响杏鲍菇的热风干燥特性。热风温度越高、风速越快,杏鲍菇的干燥速率越快,干燥时间越短。当物料尺寸较小或物料单层干燥时,也能加快干燥速率,缩短干燥时间。杏鲍菇热风温度为80℃时干燥速率较快;风速为1.5 m/s时,杏鲍菇干燥速率较快,干燥时间较短;物料尺寸1 cm×1 cm,物料堆积层数为单层进行干燥时,干燥速率均较快。应用Matlab 7.0软件,采用高斯-牛顿运算法对5种干燥模型进行非线性回归拟合求解,并确定模型系数。结果发现Two-term模型具有较高的决定系数R2,较低的残差平方和SSE及均方根误差RMSE,该模型能准确地表达和预测杏鲍菇热风干燥过程的水分变化规律。  相似文献   

5.
熟化甘薯热风干燥特性及数学模型研究   总被引:3,自引:3,他引:3  
沈晓萍  王蒙蒙  卢晓黎 《食品与机械》2007,23(3):119-121,142
利用热风干燥试验台对熟化甘薯的热风干燥特性进行研究,探讨不同干燥温度、热风风速、铺料密度对干燥速率的影响,其影响因素大小依序为:干燥温度>干燥风速>铺料密度.利用3种不同干燥速率模型对实验数据进行拟合,发现甘薯热风干燥符合Page方程,即,模型拟合F值为1 102.35,呈极显著.  相似文献   

6.
竹笋热风薄层干燥特性及动力学分析   总被引:1,自引:0,他引:1       下载免费PDF全文
干燥是竹笋加工中最为常见的一种方式,为了解竹笋在热风薄层干燥条件下的干燥特性,本实验以大叶麻竹笋为试验原料,竹笋片干基含水率和干燥速率为试验测试指标,研究了不同干燥温度、风速和笋片厚度等因素对干燥速率的影响,并建立竹笋热风薄层干燥的动力学模型。结果表明:热风薄层干燥温度、风速和笋片厚度均对竹笋的干燥特性影响较大。随着干燥温度和风速的升高,干燥速率增加;随着笋片厚度的增加,干燥速率降低。不同条件下的干燥均可分为加速、恒速和降速干燥3个阶段。竹笋的适宜热风薄层干燥条件为干燥温度80℃、风速2.0 m/s、笋片厚度1.0 cm。竹笋热风薄层干燥的动力学满足Page模型,Page模型适合对竹笋热风薄层干燥过程进行描述和预测。所得研究结果将为竹笋干的热风薄层干燥可控制工业化生产提供参考。  相似文献   

7.
紫薯热风干燥特性及数学模型   总被引:4,自引:0,他引:4  
目的:以新鲜紫薯为原料,研究其热风干燥特性及数学模型。方法:以铺料密度、干燥温度、热风风速为因素,研究其对紫薯热风干燥特性的影响,并通过SAS8.0软件对实验数据进行拟合得出紫薯热风干燥模型。结果:得到紫薯热风干燥的干燥特性曲线和干燥速率曲线;紫薯热风干燥数学模型为ln(-lnMR)=ln(-0.0104+0.000283T+0.00427V-0.0126P)+(1.1830-0.00067T+0.0487V-0.1332P)lnt(MR为水分比;T为干燥温度/℃,V为物料干燥热风速率/(m/s);P为物料干燥铺料密度/(g/cm2;t为干燥时间/min)。结论:干燥温度、物料铺料密度对紫薯热风干燥的速率有较大影响,而热风风速对干燥速率的影响较小;紫薯热风干燥符合Page模型。  相似文献   

8.
介绍了热风微波耦合干燥系统的腔体结构、控制方法、工作原理,并完成了微波热风耦合干燥系统的设计与安装。以马铃薯为试验对象,研究了其在单一热风、微波干燥及热风微波耦合干燥状态下马铃薯丁的干燥特性,利用正交试验和方差分析,得到各因素对干燥综合效果影响主次顺序为:微波功率密度热风风速热风温度,影响马铃薯丁热风微波耦合干燥综合效果最优的组合为:热风温度50℃、微波功率密度6 W/g、热风风速1.6 m/s。试验结果验证了该系统的有效性和可行性,为马铃薯热风微波耦合干燥提供理论基础与数据依据。  相似文献   

9.
以未漂硫酸盐针叶木浆为干燥对象,研究了热风温度和风速对浆板干燥特性的影响。利用Weibull分布函数对浆板的干燥特性曲线进行了模拟,并建立热风温度、风速与模型中参数(尺度参数α、形状参数β)的定量关系。结果表明,Weibull分布函数可以很好地模拟浆板的热风干燥过程;模型的尺度参数α与热风温度和风速有关,并且随热风温度和风速的升高而降低;模型的形状参数β与热风风速有关,随热风风速的升高而降低;浆板热风干燥过程的估算水分扩散系数在2. 116×10-7~3. 251×10-7m2/s之间,干燥活化能为14. 8 kJ/mol。  相似文献   

10.
利用热风对海鲜菇进行干燥,考察了干燥温度对海鲜菇干燥特性的影响,并用3种常用的干燥经验模型对其进行拟合。结果表明干燥温度对海鲜菇干燥的特性影响较大,随着干燥温度的升高,干燥效果提高明显。海鲜菇的热风干燥过程分为加速、降速和恒速3个阶段,其中降速为主要阶段。Page方程较适用于海鲜菇的热风干燥动力学模型的描述,可以用来控制与预测海鲜菇的热风干燥过程。海鲜菇的水分有效扩散系数随着热风干燥温度的升高而增大,当热风温度从333 K增加到353 K时,其水分有效扩散系数从1.62448×10-9 m2/s增加到4.32343×10-9 m2/s,海鲜菇热风干燥的活化能为48.17 kJ/mol,该研究为海鲜菇干燥过程的设备选型、节能降耗及干品品质提升提供技术支持。  相似文献   

11.
山药热泵干燥特性及数学模型的研究   总被引:4,自引:3,他引:4       下载免费PDF全文
本文以新鲜山药为原料,研究其热泵干燥特性及数学模型。以干燥温度、切片厚度为因素,研究其对山药热泵干燥特性的影响,并通过SAS8.0软件对实验数据进行拟合得出山药热泵干燥模型,得到了山药热泵干燥的干燥特性曲线和干燥速率曲线。干燥温度越高、切片厚度越薄,山药的干燥速率越快,干燥时间越短。干燥温度对山药热泵干燥的速率有较大影响,而切片厚度对干燥速率的影响较小;山药热泵干燥符合Page模型,模型拟合效果很好,经验证,模型预测值与实验值比较吻合,能正确反应山药干燥规律,该模型可以用来描述山药热泵干燥过程变化过程。对热泵干燥山药产品的品质进行分析表明,与热风干燥相比,采用热泵干燥方式山药具有较好的复水性,色泽呈乳白色,感官品质良好。  相似文献   

12.
研究不同微波功率下洋葱的干燥特性。结果表明:与热风干燥相比,微波干燥所需时间短,在119W和231W条件下干燥时间分别是80℃热风干燥时间的0.35倍和0.125倍;当微波功率大于385W时,洋葱发生褐变,且功率越高,褐变越严重;功率为119W和231W时,洋葱基本不发生褐变。复水实验表明:功率为119W和231W时,洋葱的复水比高,其复水比分别为4.87和4.67。洋葱微波干燥过程主要处于恒速期,其数学模型符合Page方程。  相似文献   

13.
张美霞  琚争艳  阚建全 《食品科学》2009,30(22):184-187
利用单因素和正交试验以及SPSS12.0 等方法,在热风薄层干燥平台上对鲜切藕片的热风薄层干燥工艺及数学模型进行系统研究。结果表明,鲜切藕片热风薄层干燥的最佳工艺条件:热风温度70℃、风速0.3m/s、装样量40g。在该最佳工艺条件下,产品的干燥速率、碘蓝值、白度和复水性4 个指标均达到最好的水平,建立鲜切藕片的热风薄层干燥数学模型为MR=0.857412114exp(- 0.050102613t) (R2=0.96537)。通过预测值和测定值的比较,表明该方程能够较好的模拟该条件下鲜切藕片的干燥过程。  相似文献   

14.
鲍鱼热风干燥动力学及干燥过程数学模拟   总被引:5,自引:1,他引:5  
研究了鲍鱼在不同热风干燥温度下的干燥动力学特点,并构建了干燥过程的数学模型。热风干燥温度选取60、65、70、75、80℃;风速恒定为1m/s。干燥方法采取间歇干燥,分两个阶段进行。利用理论模型—扩散模型,和常见经验模型—Newton模型、Henderson and Pabis模型、Logaritmic模型、Two-terms模型、Page模型及Modified Page模型,对鲍鱼干燥过程的两个阶段分别进行描述。实验结果表明:鲍鱼热风干燥只经历降速阶段,水分扩散在鲍鱼干燥的过程中起主导作用。通过对实验数据进行统计分析,得到适合鲍鱼热风干燥的模型为Page模型(第一阶段干燥)和Two-terms模型(第二阶段干燥),模型的预测值与实际值比较吻合(Page模型r2>0.999,s<1%;Two-terms模型r2>0.997,s<2%),可以用来描述鲍鱼的热风干燥过程。  相似文献   

15.
低糖板栗果脯微波-热风结合干燥技术的研究   总被引:1,自引:0,他引:1  
采用微波和热风干燥,研究了低糖板栗果脯在干燥过程中的品质变化,并利用数学建模的方法对低糖板栗果脯的微波和热风干燥过程进行模拟。实验结果表明,最佳干燥工艺为:初始微波干燥功率密度为2W/g,水分含量干燥至20%时(干燥时间18min),再换用60℃热风干燥至水分含量15%,整个干燥过程总需138min。低糖板栗果脯前期微波干燥可用Page方程描述,后期热风干燥可用Henderson and Pabis模型描述。相比传统热风干燥,微波-热风结合干燥低糖板栗果脯不仅缩短了干燥时间,而且能提高果脯的品质。  相似文献   

16.
基于控温的莲子微波干燥特性及干燥品质研究   总被引:1,自引:0,他引:1  
为了探索基于控温下的莲子微波干燥特性及干燥品质,研究不同微波功率、物料表面温度区间对莲子微波干燥特性的影响,对莲子进行了微波控温干燥试验,并将基于控温下的微波干燥莲子与热风干燥莲子在品质上进行了分析。研究结果表明:物料表面温度对莲子干燥影响较大,物料表面温度区间越大,莲子干燥速率越快,干燥时间越短;微波干燥功率对莲子干燥影响较小。采用7种常见的薄层干燥模型对控温微波干燥过程进行拟合,结果表明Midilli模型是最适合描述在莲子微波控温干燥过程中水分变化规律的薄层干燥模型。根据Fick第二定律得出莲子控温微波干燥的有效扩散系数为8.9891×10-10~2.22431×10-9 m2/s;由Arrhenius方程得出莲子微波控温干燥的活化能为79.85 kJ/mol。两种干燥方式干燥的莲子复水率差异不显著(p>0.05);莲子控温微波最短干燥时间低于热风干燥。研究结果可为莲子控温微波联合干燥工艺提供参考。  相似文献   

17.
为了探讨蔗渣干燥特性,利用功率分别为中火档、中高火档的微波对蔗渣进行微波干燥,同时分别在90℃、100℃的条件下进行热风干燥实验对比,研究了不同干燥方法蔗渣的干燥特性,计算了不同实验条件下的有效水分扩散系数。结果表明:整个干燥过程,微波干燥相对于热风干燥时间缩短了80%以上;热风干燥、微波干燥蔗渣的平均绝干含水量分剐为7.56%、0.98%;在实验条件范围内,微波干燥过程内部水分扩散速度较热风干燥速度要大。  相似文献   

18.
目的:探究猪肉微波干燥特性,优化肉类微波干燥过程.方法:采用微波频率为2 450 MHz,微波输出功率为70,140,210,280,350,420 W的微波干燥设备,对干燥质量为20,25,30 g的猪肉进行微波干燥处理;并选用5种经典薄层干燥模型对干燥数据进行非线性拟合,以均方根误差和决定系数为评价指标,筛选出最佳...  相似文献   

19.
南瓜热风干燥特性与动力学模型   总被引:1,自引:0,他引:1  
研究南瓜片在不同温度(60℃、70℃和80℃)下的热风干燥特性。采用Fick扩散模型对南瓜片的水分质量传递进行描述,并计算水分扩散系数。结果表明,热风温度越高,干燥速率越快,干燥过程发生在降速阶段。水分扩散系数随温度的升高而增大,在试验温度范围内,有效扩散系数值在5.4150&#215;10-10~1.0077&#215;10-9 m2/s之间。温度对水分扩散的影响可用Arrhenius关系方程来表示,其决定系数为0.997。南瓜的活化能值为30.33kJ/mol。采用12种数学模型对南瓜片的薄层干燥过程进行描述,通过比较水分比的试验值和预测值之间的统计参数---决定系数(R2)、卡方(X2)和均方根误差(RMSE),发现Modified Henderson and Pabis模型最适宜于描述南瓜片的薄层干燥过程,该模型能较准确地表达和预测南瓜热风干燥过程的水分变化规律。  相似文献   

20.
研究不同干燥温度、风速、物料盒宽度和喷嘴高度对山楂气体射流冲击干燥特性及有效水分扩散系数的影响,采用7 种数学模型拟合实验数据,得到了用于描述山楂气体射流冲击干燥的最适数学模型。结果表明:山楂的气体射流冲击干燥主要属于降率干燥。干燥温度对山楂的干燥曲线和干燥速率曲线均具有显著影响,而风速、物料盒宽度以及喷嘴高度对山楂的干燥曲线和干燥速率曲线的影响均不显著。山楂的气体射流冲击干燥有效水分扩散系数随着风温和风速的增加而增加,随着物料盒宽度和喷嘴高度的增加而降低,且最高有效水分扩散系数为9.271×10-8 m2/s。在实验范围内最适宜于描述山楂在气体射流冲击干燥过程中含水率变化规律的数学模型是Page和Modified Page模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号