首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
基于热应力场耦合建立了汽车涡旋压缩机涡旋盘有限元模型,涡旋齿载荷边界条件设置为流场离散,在气体压力载荷单独作用、温度场载荷单独作用以及两者耦合作用这三种情况下,对涡旋盘进行受力分析和变形分析, 讨论不同主轴转角的涡旋齿的刚度和强度,最后得到涡旋齿的变形规律和应力分布。分析结果表明:当涡旋盘压缩腔运动到排气孔位置时,涡旋盘处于变形与应力最大的状态,热变形是影响涡旋盘整体变形的主要因素。  相似文献   

2.
为了研究涡旋压缩机在多场载荷耦合作用下变截面涡旋齿的变形和应力分布,基于动网格技术,利用Fluent软件对涡旋压缩机工作过程进行流场模拟,将温度场和压力场分析结果直接导入ANSYS软件中,利用间接耦合的方法对动涡旋齿和动、静涡旋齿装配后在单场及多场耦合作用下强度进行分析。结果表明:温度场对涡旋齿变形影响较大,耦合场下的变形并不是各场单独作用下变形之和;装配后涡旋盘的安装间隙对涡旋齿的变形存在干涉,单独分析动涡旋齿时的变形大于装配后的变形;根据应力分布分析,最大值出现在涡旋齿壁厚较大的位置,说明该组合型线涡旋齿具有较强的抗变形能力,可为判断涡旋型线优劣和研究涡旋压缩机间隙与泄漏提供理论基础。  相似文献   

3.
通过采用有限元方法,运用ANSYS软件,对涡旋压缩机动涡盘受气体力载荷工况和受温度载荷、气体力载荷共同作用工况时进行比较分析,并做不同温度载荷下的耦合分析,得出动涡盘变形和应力分布规律,指出了设计分析中应考虑的重要因素.  相似文献   

4.
采用Solidworks建立了无油涡旋压缩机动、静涡旋盘的三维模型,运用ANSYS分析软件对涡旋压缩机动涡盘分别在气体力、温度、惯性约束条件下以及在多场耦合载荷下涡旋齿的变形和应力分布规律进行了分析,并研究了不同齿厚和齿高的动涡盘涡旋齿在多场耦合载荷作用下的变形情况,得到涡旋盘的应力分布和涡旋齿变形情况。分析结果表明,对涡旋齿的变形影响最大的载荷是温度载荷场;在腔内气体被压缩时,涡旋齿始端部位温度最高,所受气体力也最大;耦合场下涡旋齿始端顶部变形最大,最大应力出现在齿根部位,且耦合场的最大应力不是各载荷应力的叠加;涡旋齿越高变形越大,涡旋齿越厚变形越小,分析研究结果为定量化确定无油涡旋压缩机的轴向间隙和径向间隙提供了理论依据。  相似文献   

5.
为了更准确全面地研究变齿厚涡旋盘实际运转时的应力应变情况,以某型涡旋压缩机为例,根据变齿厚型线方程几何理论,计算排气时刻各工作腔的容积,确定吸、排气工作腔的气体压力载荷以及进、排气工作温度载荷。采用Creo曲线方程建立精确的变齿厚涡旋盘模型,基于有限元理论和气-热-固间接耦合法,分析在气体压力载荷、温度载荷以及接触力载荷综合作用下动涡旋盘齿的应力及应变,并对比分析了不同载荷对轴向、径向变形的影响规律。得出相比于温度载荷,在气-热载荷作用下,涡旋盘齿的应力增大1.03倍,变形量增大75%。接触力载荷对涡旋齿的应力、总变形影响甚微。受载荷分布影响,随着渐开线展开角的展开,涡旋齿总变形量逐渐减小。  相似文献   

6.
采用有限元方法,对涡旋压缩机动涡盘在气体力及温度载荷作用下应力分布特点及变形规律进行了分析。结果表明最大应力发生在齿头根部,对变形的分析中得到气体力主要影响径向及周向变形。而温度载荷主要影响轴向变形。  相似文献   

7.
针对涡旋压缩啮合间隙存在复杂的泄漏问题,提出了一种考虑动涡盘公转运动且分区的泄漏模型,得到了涡旋压缩机啮合间隙处不同区域内流场的分布规律,对现有的泄漏模型进行了进一步补充;并采用了结构化动网格模型进行数值模拟研究,对啮合间隙处网格进行了加密,解决了涡旋压缩机采用非结构化网格模型由于网格的重构再生啮合间隙仅有单层网格导致模拟结果不准确的问题,得到了内部流场和啮合间隙处的流态特点,以及啮合间隙处泄漏速度、进气口与排气口质量流量与主轴转角的关系。  相似文献   

8.
涡旋压缩机动涡旋盘应力及变形的研究   总被引:4,自引:1,他引:4  
刘振全  戚智勇 《流体机械》1995,23(10):23-26
通过对实际工况下涡旋盘的受力分析,建立了有限元分析模型,并由此得到了空调用全封闭涡旋压缩机动涡盘在实际工况下的应力分布特点及变形规律,找出了零件最危险点,得出了对涡旋盘进行强度校核的比较准确的方法,并证明了涡旋齿头部修正的必要性。  相似文献   

9.
涡旋压缩机运行过程中工作腔内部流场状态参数难以通过试验测试获取。所以采用数值模拟的方法获得动、静涡旋盘啮合过程中流场的运动变化规律已成为涡旋压缩机热点方向之一。为此,以圆渐开线型线的动、静涡旋盘为对象,从涡旋压缩机的三维实体模型中简化并得到了带有移动边界和轴向间隙的动、静涡旋盘啮合的三维流场数值模型。该模拟以R134a为工作介质,满足流体控制方程和气体状态方程,湍流模型采用RNG k-ε模型;利用CFD动网格技术设置流场边界,通过内部网格的拉伸、变形获得了工作腔内流体流动的压力、温度和速度的动态分布规律,探索了压缩过程中腔内压力、温度、速度分布不均匀的原因,并针对不同非整数圈和不同转速下的压缩机工作腔进行模拟和对比分析,为今后涡旋压缩机的研发提供理论基础。  相似文献   

10.
针对涡旋压缩机工作过程中动涡旋盘端面在常见工况下因表面磨损过大导致气体泄漏问题,以某型号涡旋压缩机为研究对象,建立动涡旋盘端面摩擦副受力分析模型,分析作业过程中动涡旋盘端面受载荷变化情况;利用有限元数值模拟得到动涡旋盘在典型工况下不同转速时端面摩擦副动态接触应力变化云图,在端面磨损实验机上测得动涡旋盘常用材料QT400磨损系数,通过修正Archard磨损模型并结合有限元磨损仿真计算出在不同转速下QT400的磨损深度值,并根据材料PV值原理设计实验方案分析QT400的磨损机制。结果表明:动涡旋盘转速越快,接触应力值较大的区域磨损深度值越大:材料磨损机制主要为疲劳磨损,随着载荷增大磨损机制不断向黏着磨损转化,并伴随有少量的磨粒磨损,该研究对涡旋压缩机动涡旋盘结构改进具有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号