首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
This article focuses on the state-feedback ? control problem for the stochastic nonlinear systems with state and disturbance-dependent noise and time-varying state delays. Based on the maxmin optimisation approach, both the delay-independent and the delay-dependent Hamilton–Jacobi-inequalities (HJIs) are developed for synthesising the state-feedback ? controller for a general type of stochastic nonlinear systems. It is shown that the resulting control system achieves stochastic stability in probability and the prescribed disturbance attenuation level. For a class of stochastic affine nonlinear systems, the delay-independent as well as delay-dependent matrix-valued inequalities are proposed; the resulting control system satisfies global asymptotic stability in the mean-square sense and the required disturbance attenuation level. By modelling the nonlinearities as uncertainties in corresponding stochastic time-delay systems, the sufficient conditions in terms of a linear matrix inequality (LMI) and a bilinear matrix inequality (BMI) are derived to facilitate the design of the state-feedback ? controller. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed methods.  相似文献   

2.
This paper investigates the exponential stabilisation and H control problem of neutral stochastic delay Markovian jump systems. First, a delay feedback controller is designed to stabilise the neutral stochastic delay Markovian jump system in the drift part. Second, sufficient conditions for the existence of feedback controller are proposed to ensure that the resulting closed-loop system is exponentially stable in mean square and satisfies a prescribed H performance level. Finally, numerical examples are provided to show the effectiveness of the proposed design methods.  相似文献   

3.
4.
This paper first discusses the H control problem for a class of general nonlinear Markovian jump systems from the viewpoint of geometric control theory. Following with the updating of the Markovian jump mode, the appropriate diffeomorphism can be adopted to transform the system into special structures, which establishes the basis for the geometric control of nonlinear Markovian jump systems. Through discussing the strongly minimum-phase property or the strongly γ-dissipativity of the zero-output dynamics, the H control can be designed directly without solving the traditional coupled Hamilton–Jacobi inequalities. A numerical example is presented to illustrate the effectiveness of our results.  相似文献   

5.
The H∞ output feedback control problem for a class of large-scale nonlinear systems with time delay in both state and input is considered in this paper. It is assumed that the interconnected nonlinearities are limited by constant multiplied by unmeasured states, delayed states and external disturbances. Different from existing methods to study the H∞ control of large-scale nonlinear systems, the static gain control technique is utilized to obtain an observer-based output feedback control strategy, which makes the closed-loop system globally asymptotically stable and attenuates the effect of external disturbances. An example is finally carried out to show the feasibility of the proposed control strategy.  相似文献   

6.
The H∞ output feedback control problem for a class of large-scale nonlinear systems with time delay in both state and input is considered in this paper. It is a...  相似文献   

7.
In this paper, robust H control for a class of uncertain stochastic Markovian jump systems (SMJSs) with interval and distributed time-varying delays is investigated. The jumping parameters are modelled as a continuous-time, finite-state Markov chain. By employing the Lyapunov-Krasovskii functional and stochastic analysis theory, some novel sufficient conditions in terms of linear matrix inequalities are derived to guarantee the mean-square asymptotic stability of the equilibrium point. Numerical simulations are given to demonstrate the effectiveness and superiority of the proposed method comparing with some existing results.  相似文献   

8.
This article focuses on the problems of robust stabilisation and H control for nonlinear uncertain stochastic systems with mode-dependent time delay and Markovian jump parameters represented by the Takagi–Sugeno (T-S) fuzzy model approach. The system under consideration involves parameter uncertainties, Itô-type stochastic disturbances, Markovian jump parameters and unknown nonlinear disturbances. The purpose is to design a state feedback controller such that the closed-loop system is robustly exponentially stable in the mean square and satisfies a prescribed H performance level. Novel delay-range-dependent conditions in the form of linear matrix inequalities (LMIs) are derived for the solvability of robust stabilisation and H control problem. A desired fuzzy controller can be constructed by solving a set solutions of LMIs and can be easily calculated by Matlab LMI control toolbox. Finally, a numerical example is presented to illustrate the proposed method.  相似文献   

9.
In this article, neural networks are used to approximately solve the finite-horizon optimal H state feedback control problem. The method is based on solving a related Hamilton–Jacobi–Isaacs equation of the corresponding finite-horizon zero-sum game. The neural network approximates the corresponding game value function on a certain domain of the state-space and results in a control computed as the output of a neural network. It is shown that the neural network approximation converges uniformly to the game-value function and the resulting controller provides closed-loop stability and bounded L 2 gain. The result is a nearly exact H feedback controller with time-varying coefficients that is solved a priori offline. The results of this article are applied to the rotational/translational actuator benchmark nonlinear control problem.  相似文献   

10.
《Automatica》2001,37(3):409-417
Linear discrete-time systems with stochastic uncertainties in their state-space matrices are considered. The problems of finite-horizon filtering and output-feedback control are solved, taking into account possible cross-correlations between the uncertain parameters. In both problems, a cost function is defined which is the expected value of the relevant standard H performance index with respect to the uncertain parameters. A solution to the filtering problem is obtained first by applying the adjoint system and deriving a bounded real lemma for this system. This solution guarantees a prescribed estimation level of accuracy while minimizing an upper bound on the covariance of the estimation error. The solution of the filtering problem is also extended to the infinite-horizon case. The results of the filtering problem are used to solve the corresponding output-feedback problem. A filtering example is given where a comparison is made with the results obtained using bounded uncertainty design techniques.  相似文献   

11.
This paper concerns the problem of H filtering for piecewise homogeneous Markovian jump nonlinear systems. Different from the existing studies in the literatures, the existence of variations in transition rates for Markovian jump nonlinear systems is considered. The purpose of the paper is to design mode-dependent and mode-independent filters, such that the dynamics of the filtering errors are stochastic integral input-to-state stable with H performance index. Using the linear matrix inequality method and the Lyapunov functional method, sufficient conditions for the solution to the H filtering problem are derived. Finally, three examples are proposed to illustrate the effectiveness of the given theoretical results.  相似文献   

12.
13.
In this article, the problem of robust sampled-data H output tracking control is investigated for a class of nonlinear networked systems with stochastic sampling and time-varying norm-bounded uncertainties. For the sake of technical simplicity, only two different sampling periods are considered, their occurrence probabilities are given constants and satisfy Bernoulli distribution, and can be extended to the case with multiple stochastic sampling periods. By the way of an input delay, the probabilistic system is transformed into a stochastic continuous time-delay system. A new linear matrix inequality-based procedure is proposed for designing state-feedback controllers, which would guarantee that the closed-loop networked system with stochastic sampling tracks the output of a given reference model well in the sense of H . Conservatism is reduced by taking the probability into account. Both network-induced delays and packet dropouts have been considered. Finally, an illustrative example is given to show the usefulness and effectiveness of the proposed H output tracking design.  相似文献   

14.
This paper is concerned with the problem of delay-dependent robust H control for uncertain fuzzy Markovian jump systems with time delays. The purpose is to design a mode-dependent state-feedback fuzzy controller such that the closed-loop system is robustly stochastically stable and satisfies an H performance level. By introducing slack matrix variables, a delay-dependent sufficient condition for the solvability of the problem is proposed in terms of linear matrix inequalities. An illustrative example is finally given to show the applicability and effectiveness of the proposed method. Recommended by Editorial Board member Young Soo Suh under the direction of Editor Jae Weon Choi. This work is supported by the National Science Foundation for Distinguished Young Scholars of P. R. China under Grant 60625303, the Specialized Research Fund for the Doctoral Program of Higher Education under Grant 20060288021, and the Natural Science Foundation of Jiangsu Province under Grant BK2008047. Yashun Zhang received the B.S. and M.S. degrees in Control Science and Control Engineering from Hefei University of Science and Technology in 2003 and 2006. He is currently a Ph.D. student in Control Science and Control Engineering, Nanjing University of Science and Technology. His research interests include fuzzy control, sliding mode control and nonlinear control. Shengyuan Xu received the Ph.D. degree in Control Science and Control Engineering from Nanjing University of Science and Technology in 1999. His research interests include robust filtering and control, singular systems, time-delay systems and nonlinear systems. Jihui Zhang is a Professor in the School of Automation Engineering of Qingdao University, China. His main areas of interest are discrete event dynamic systems, production planning and control, and operations research.  相似文献   

15.
This paper proposes an observer-based output tracking control via virtual desired reference model for a class of nonlinear systems with time-varying delay and disturbance. First, the Takagi–Sugeno fuzzy model represents the nonlinear system with time-varying delay and disturbance. Then we design an observer to estimate immeasurable states and controller to drive the error between estimated state and virtual desired variables (VDVs) to zero such that the overall control output tracking system has H control performance. Using Lyapunov–Krasovskii functional, we derive sufficient conditions for stability. The advantages of the proposed output control system are (i) systematic approach to derive VDVs for controller design; (ii) relaxes need for real reference model; (iii) drops need for information of equilibrium; (iv) relaxed condition is provided via three-step procedure to find observer and controller gain. We carry out simulation using a continuous stirred tank reactor system where the effectiveness of the proposed controller is demonstrated by satisfactory numerical results.  相似文献   

16.
This article investigates the problem of designing H dynamic output feedback controllers for nonlinear systems, which are described by affine fuzzy models. The system outputs have been chosen as premise variables, which can guarantee that the plant and the controller always switch to the same region. By using a piecewise Lyapunov function and adding slack matrix variables, a piecewise-affine dynamic output feedback controller design method is obtained in the formulation of linear matrix inequalities (LMIs), which can be efficiently solved numerically. In contrast to the existing work, the proposed approach needs less LMI constraints and leads to less conservatism. Finally, numerical examples illustrate the effectiveness of the new result.  相似文献   

17.
This article is concerned with the dynamic output feedback H control problem for networked control systems with quantisation and random communication delays, where the random communication delays from the sensor to the controller and from the controller to the actuator are considered simultaneously. A novel quantised random delay model is proposed, and by using this model, the relationship of the quantisations, delays and the system performance is studied. The quantiser considered here is dynamic and composed of an adjustable zoom parameter and a static quantiser. With the condition on the quantisation range and the error bound satisfied, a quantised H control strategy is derived such that the closed-loop system is exponentially mean-square stable and with a prescribed H performance bound. An example is presented to illustrate the effectiveness of the proposed method.  相似文献   

18.
The problem of H X filtering for continuous-time linear systems with Markovian jump is investigated. It was assumed that the jumping parameter was available. This paper develops necessary and sufficient conditions for designing a Markovian jump linear filter that ensures a prescribed bound on the L 2 -induced gain from the noise signals to the estimation error. The main result is tailored via linear matrix inequalities.  相似文献   

19.
This paper investigates the problem of reliable finite-time H control for one class of uncertainsingular nonlinear Markovian jump systems with time-varying delay subject to partial information on the transition probabilities. Continuous fault model is more general and practical to serve as the actuator fault. Time delay is a kind of positive time-varying differentiable bounded delays. First, based on a state estimator the resulting closed-loop error system is constructed and sufficient criteria are provided to guarantee that the augmented system is singular stochastic finite-time boundedness and singular stochastic H finite-time boundedness in both normal and fault cases via constructing a delay-dependent Lyapunov–Krasonskii function. Then, the gain matrices of state-feedback controller and state estimator are fixed by solving a feasibility problem in terms of linear matrix inequalities through decoupling technique, respectively. Finally, numerical examples are given to show the validity of the proposed design approach.  相似文献   

20.
This paper is concerned with the problem of reliable H ?? filter design for a class of mixeddelay Markovian jump systems with stochastic nonlinearities and multiplicative noises. The mixed delays comprise both discrete time-varying delay and distributed delay. The stochastic nonlinearities in the form of statistical means cover several well-studied nonlinear functions. And the multiplicative disturbances are in the form of a scalar Gaussian white noise with unit variance. Furthermore, the failures of sensors are quantified by a variable varying in a given interval. A filter is designed to guarantee that the dynamics of the estimation error is asymptotically mean-square stable. Sufficient conditions for the existence of such a filter are obtained by using a new Lyapunov-Krasovskii functional and delaypartitioning method. Then a linear matrix inequality (LMI) approach for designing such a reliable H ?? filter is presented. Finally, the effectiveness of the proposed approach is demonstrated by a numerical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号