首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new test was developed for measuring the mixed-mode I + III interlaminar fracture toughness. The specimen adopted was an 8-point bending plate (8PBP) with a cross-ply lay-up and a mid-thickness edge pre-delamination at the standard 0/0 interface. Finite element analyses (FEA) showed that a wide range of mode mix ratios can be achieved by varying the load point displacements imposed. However, the need of FEA based experimental data reduction and of a relatively complicated fixture are important drawbacks of test developed. Nevertheless, results for carbon/epoxy laminates showed a realistic evolution of initiation Gc values with the GIII/G mode mix ratio.  相似文献   

2.
Fracture resistance of polymer reinforced with short fibers consists of a sum of contributions from matrix and fiber fracture, fiber debonding and pull-out. The existing models for predicting dependence of fracture toughness on structural variables were derived for the commercially important fiber volume fractions, i.e., for vf ? 0.1. In this contribution, modification of the existing model for the dependence of the critical strain energy release rate, GIC, on the fiber type, length and aspect ratio, interfacial adhesion and volume fraction has been attempted to allow predictions at low vf < 0.10. The predictions based on the modified model were compared with experimental data on fracture toughness of lightly x-linked PMMA used to manufacture base of removable dentures toughened with short randomly oriented deformable fibers. The composite toughness was measured under impact loading to simulate typical mode of fracture of removable dentures. The GIC for composites containing short Kevlar 29, S2-glass and poly(vinyl alcohol) (PVOH) fibers were obtained using instrumented Charpy impact tests at room temperature and impact speed of 1.0 m/s. Theoretical prediction based on the proposed model and experimental results agreed reasonably well.  相似文献   

3.
《Composites Part B》2013,45(1):242-247
Bamboo is a kind of biological composites reinforced by unidirectional long fiber. Once there exists crack, the propagation of delamination is controlled by the interlaminar fracture toughness instead of by strength. In this paper, the end notched flexure (ENF) beam specimen was used to test the Mode II interlaminar fracture toughness GIIC along grain of Moso bamboo internode and the fracture surface was analyzed. The results were obtained that the Mode II interlaminar fracture toughness GIIC calculated by the experiment parameter substitution method was more accurate and the value was 1303.18 J/m2 (coefficient of variation = 8.96%) which was about three times higher than the value of Mode I interlaminar fracture toughness; the crack propagation of Mode II interlaminar fracture was mainly self-similar cracking, but the fracture surface was rougher. Ground tissue in the zone of Mode II crack propagation was characterized by hackle shearing deformation. The SEM photos showed that ground tissue separated from fiber along middle lamella under shear stress and as the increasing of the dislocation of upper and lower layer, the thin-walled ground tissue would fracture transversely by tension, while to thick-walled fiber cell, only middle lamella and primary wall were torn then debonded, fragments remained.  相似文献   

4.
A fracture mechanics model was developed for determining the fracture toughness of the fiber/matrix (F/M) interface based on a modified test procedure for the single fiber fragmentation test (SFFT). After loading the specimen until the first fiber fracture and instantaneous debonding events occur, the specimen is unloaded and loaded again until the debond propagates. The critical load for debond propagation is measured and is used with a fracture mechanics analysis to determine the interface fracture toughness. The analysis considers also friction between the fiber and matrix in the debonded region. To obtain the necessary data for calculation of residual radial stress at the F/M interface due to matrix cure shrinkage, simultaneous measurements of dynamic modulus and cure shrinkage were conducted on the matrix (vinylester) during cure. Tests employing E-glass/vinylester SFFT specimens provided fracture toughness values of Gcd = 62 J/m2 (frictionless) and 48 J/m2 (friction).  相似文献   

5.
In the present study, the extent of jute and viscose fibre breakage during the extrusion process on the fracture toughness and the fatigue properties was investigated. The composite materials were manufactured using direct long fibre thermoplastic (D-LFT) extrusion, followed by compression moulding. The fracture toughness (KIC) and the fracture energy (GIC) of the PP–J30 composites were significantly improved (133% and 514%, respectively) with the addition of 10 wt% viscose fibres, indicating hindered crack propagation. The addition of viscose fibres resulted in three times higher fatigue life compared with that of the unmodified jute composites. Further, with the addition of (2 wt%) MAPP, the PP–J30–V10 resulted in a higher average viscose fibre length of 8.1 mm, and the fracture toughness and fracture energy increased from 9.1 to 10.0 MPa m1/2 and 28.9 to 31.2 kJ/m2, respectively. Similarly, the fatigue life increased 51% compared with the PP–J30–V10, thus demonstrating the increased work energy due to hindrance of the propagation of cracks.  相似文献   

6.
As part of the 1994 Sea Ice Mechanics Initiative experimental program, fracture experiments were carried out on an 80 m diameter ridged multi-year (MY) ice floe in the Beaufort Sea. An edge cracked, quasi-circular ridged floe was subjected to both cyclic and ramp loading sequences using a steel flat jack. Load, crack opening displacement, acoustical and seismic measurements were made during the experiments. The objective was to gain further insight into the fracture and constitutive properties of MY sea ice. Accurate predictions of the strength of MY sea ice and the forces developed during interactions between MY sea ice and floating or fixed structures are sought. Such interactions include MY ice floe collisions with offshore structures and ships. The fracture resistance of MY ice is determined to be within the range 23 < Gc < 47 J/m2 for a 80 m diameter ridged MY floe. This fracture energy is similar to values obtained for the fracture of FY sea ice both in the Arctic and the Antarctic.  相似文献   

7.
The fatigue-crack-closure concept has been successfully used with stress-intensity factors to predict the growth of cracks under a wide variety of load histories and in complex crack configurations. Both test and crack-closure analyses have shown that the stress-intensity-factor-range-against-rate curves are affected by the stress ratio (R), the applied stress or load level (Smax or Pmax), and the crack-front constraint (plane-stress or plane-strain behavior). However, most life-prediction codes use only linear-elastic fracture mechanics (LEFM) concepts, which neglect stress-level effects, to make life predictions. Thus, under some loading conditions, such as negative R ratios or high-applied stress levels, non-conservative life predictions are made using only LEFM procedures.Fatigue-crack-growth tests have been conducted on middle-crack tension M(T) specimens made of 2024-T3 thin-sheet (B = 2.3 mm) aluminum alloy over a wide range in applied stress levels (0.1–0.5 times the flow stress of the material) and for two stress ratios (R = 0.05 and −1). The FASTRAN life-prediction code, using either the crack-closure model or LEFM procedures, and the AFGROW code, which uses only LEFM procedures, were used to make crack-growth predictions from an initial crack size to failure in the M(T) specimens. The results from AFGROW and FASTRAN, using LEFM procedures, agreed very well with each other. The crack-closure model predicted all results with ±20%, whereas, the codes using LEFM procedures (neglecting stress-level effects) resulted in non-conservative life predictions as large as a factor-of-3 from the test results.  相似文献   

8.
This paper examines the effect of mode I interlaminar fracture toughness (GIc) on the specific energy absorption of stitched glass/polyester composite cylindrical shells under axial compression. The laminated composite cylindrical shells used as energy absorbers, absorb large amount of impact energy during collision. Since mode I delamination in the thin wall of axially collapsed shell is one of the major energy absorbing modes, contribution of GIc to specific energy absorption (SEA) of tubes is significant during collision. The GIc values are determined through double cantilever beam (DCB) test with stitched and unstitched planar specimens. The four and six-layered cylindrical tubes of D/t ratios 29.27 and 20, respectively, with GIc values ranging from 1.68 to 8.09 kJ/m2 are prepared by stitching and are subjected to quasi-static axial compression. Increasing GIc up to certain value leads to controlled progressive crushing, which is a good energy absorbing mechanism, beyond which failure is uncontrolled. Cylindrical tubes having GIc up to 6.34 kJ/m2 leads to 40% increase in SEA for four-layered tubes and 6.6% for six-layered tubes comparing with the corresponding unstitched tubes. When the tubes have GIc of 8.09 kJ/m2, four-layered tubes undergo unstable failure, but six-layered tubes undergo stable progressive crushing with 22% increase in SEA. Transition from stable to unstable failure depends upon the thickness of tubes. An analytical model is developed based on energy approach to predetermine the steady state mean crush load of cylindrical composite shells under axial compression. The model results are validated by experimental results, and show good agreement.  相似文献   

9.
The results of studies on influence of 6 MeV electron irradiation on avalanche breakdown voltage (Ub) and on forward voltage (UF) at different values of direct current (IF) for the Mo Schottky diodes on epitaxial silicon of n-type conductivity are presented. It was found out that the avalanche breakdown voltage of the diodes is very sensitive to electron irradiation. A decrease in Ub was observed after electron irradiation with a fluence as low as 1 × 1011 cm?2. An increase in electron irradiation fluence from 1 × 1011 cm?2 to 5 × 1014 cm?2 resulted in 30% decrease in Ub, however, further increase in electron irradiation fluence from 5 × 1014 cm?2 to 3 × 1016 cm?2 led to some increase in the avalanche breakdown voltage. Monotonic increases in UF values at different IF with the increase in electron irradiation fluence were observed starting from a fluence of 5 × 1014 cm?2. Radiation-induced changes in Ub were unstable at room temperature and a significant recovery of Ub occurred after maintaining the irradiated diodes at room temperature for 30 days. Annealing at 120 °C for 20 min resulted in the almost complete recovery of Ub. Radiation-induced changes in UF values were stable up to 300 °C. Mechanisms of the observed radiation-induced changes in the Ub and UF values and defects responsible for the changes are discussed.  相似文献   

10.
Functionally Gradient Materials (FGM) are considered as a novel concept to implement graded functionality that otherwise cannot be achieved by conventional homogeneous materials. For biomedical applications, an ideal combination of bioactivity on the material surface as well as good physical property (strength/toughness/hardness) of the bulk is required in a designed FGM structure. In this perspective, the present work aims at providing a smooth gradation of functionality (enhanced toughening of the bulk, and retained biocompatibility of the surface) in a spark plasma processed hydroxyapatite-alumina-zirconia (HAp-Al2O3-YSZ) FGM bio-composite. In the current work HAp (fracture toughness ~ 1.5 MPa.m1/2) and YSZ (fracture toughness ~ 6.2 MPa.m1/2) are coupled with a transition layer of Al2O3 allowing minimum gradient of mechanical properties (especially the fracture toughness ~ 3.5 MPa.m1/2). The in vitro cyto-compatibilty of HAp-Al2O3-YSZ FGM was evaluated using L929 fibroblast cells and Saos-2 Osteoblast cells for their adhesion and growth. From analysis of the cell viability data, it is evident that FGM supports good cell proliferation after 2, 3, 4 days culture. The measured variation in hardness, fracture toughness and cellular adhesion across the cross section confirmed the smooth transition achieved for the FGM (HAp-Al2O3-YSZ) nanocomposite, i.e. enhanced bulk toughness combined with unrestricted surface bioactivity. Therefore, such designed biomaterials can serve as potential bone implants.  相似文献   

11.
In this work, the toughness of a Ti-alloyed supermartensitic stainless steel with 12%Cr was evaluated by instrumented Charpy impact tests at − 46 °C. The material was heat treated by quenching and tempering at 500 °C or 650 °C. The temper embrittlement phenomena was detected in the specimen tempered at 500 °C, while the specimens as quenched and quenched and tempered at 650 °C presented a ductile fracture with high impact energy values. The predominance of cleavage fracture instead of intergranular cracks suggests that the temper embrittlement was caused by fine and disperse precipitation observed in the specimen tempered at 500 °C. The dynamic initiation fracture toughness (JId) was calculated from the force versus deflection curves using three different methods suggested in the literature to obtain the initiation energy.  相似文献   

12.
Boron carbide (B4C) has wide application in manufacturing of abrasives and cutting tools, due to its unique features such as high hardness, good wear resistance, low specific weight and chemical stability. An additive reinforcing phase and sintering aids are used to improve its sinterability. In the present paper, a B4C composite with 10 vol.% of titanium diboride nanoparticles (TiB2) and a 0, 1.5 and 2.5 vol.% iron or nickel metallic additive, respectively, was mixed in an isopropanol environment containing tungsten carbide pellets. After drying, the obtained mixture was formed by cold pressing. The obtained parts were sintered at 2400 °C. The effect of adding metallic sintering aids on the mechanical properties and microstructure of the composite was investigated and fracture toughness values were evaluated by indentation test method. Addition of Fe and Ni improved values for density, hardness, Young’s modulus and fracture toughness, with Ni addition increasing the values considerably. Scanning electron microscope (SEM) images of the microstructure of the specimens showed the arrangement posture of the additives and confirmed the results obtained. Additionally, the FeB and Ni3B blades formation were observed from the images.  相似文献   

13.
Ultra-fine grained γ-Ni–xFe (x = 20, 50, and 64 (nominal)) dispersed Al2O3-matrix composites were fabricated by a mechano-chemical process plus hot-pressing, and their mechanical and magnetic properties were explored. The results indicated that all composites incorporated with different γ-Ni–xFe alloys possessed high densities (relative density D  98%) and sub-micrometer-sized matrix dispersed with γ-Ni–xFe particles of sizes below ∼500 nm. As compared to other two composite systems, γ-Ni–20Fe/Al2O3 had finer microstructures and displayed superior fracture toughness and strength. In high iron-contained γ-Ni–64Fe/Al2O3 composite undesired FeAl2O4 phase formed on the matrix grain boundaries, which is mainly responsible for its inferior mechanical properties. Although Young’s modulus and hardness of Ni–20Fe/Al2O3 composite system decreased, its fracture toughness increased monotonously with increasing the alloy content in the composition range investigated. Moreover, incorporation of ferromagnetic γ-Ni–xFe particles led all the composite systems to display ferromagnetism with their saturation magnetization increasing almost linearly with increasing alloy content. In addition, experiments showed that their ferromagnetism had high thermal stability (Tc = ∼580 °C), no obvious magnetism degradation and magnetic interactions of the alloys with the matrix being observed. The combination of good mechanical properties with excellent magnetic performance would make this material be very valuable in industry.  相似文献   

14.
The fracture toughness associated with the fibre compressive failure was obtained from testing notched unidirectional carbon/epoxy four-point-bend specimens. Microscopy of failed specimens revealed that onset of damage was characterised by the formation of a single line of fibre breaks at approximately 45° to the plane of the initial notch. A micromechanical finite element model was used to investigate this failure scenario and it was concluded that the most probable cause of the damage morphology was compression-induced shear failure of the composite. An intrinsic material property in this case was deemed to be the mode II critical strain energy release rate associated with the initiation of the 45° crack. For IM7/8552, this was measured to be GIIc = 4.5 ± 0.8 kJ/m2.  相似文献   

15.
A novel pre-preg coating method was used to improve the interlaminar fracture toughness in carbon fibre epoxy composite laminates, using reactive liquid rubber. The Epoxy Terminated Butadiene Nitrile (ETBN) liquid rubber incorporated between pre-pregs using automatic draw bar coating technique. Experimental test results reveal that by adding ETBN in small quantities in the range of 15.55–22.66 g/m2, inter laminar critical energy release rates (GIC and GIIC) can be improved up to 140% in mode-I loadings and 32% in mode-II loadings respectively. It was confirmed that the effect of ETBN rubber concentration in carbon epoxy pre-preg system on interlaminar fracture toughness under mode-I and mode-II loadings, was discussed by on the bases of fractographic observations and mechanism considerations using SEM.  相似文献   

16.
《Materials Research Bulletin》2006,41(8):1550-1557
Two new three-dimensional chromium(III) dicarboxylate, MIL-105 or CrIII(OH)·{O2C-C6(CH3)4-CO2nH2O, have been obtained under hydrothermal conditions, and their structures solved using X-ray powder diffraction data. Both solids are structural analogs of the known Cr benzenedicarboxylate compound (MIL-53). Both contain trans corner-sharing CrO4(OH)2 octahedral chains connected by tetramethylterephthalate di-anions. Each chain is linked by the ligands to four other chains to form a three-dimensional framework with an array of 1D pores channels. The pores of the high temperature form of the solid, MIL-105ht, are empty. However, MIL-105ht re-hydrates at room temperature to finally give MIL-105lt with pores channels filled with free water molecules (lt: low temperature form; ht: high temperature form). The thermal behaviour of the two solids has been investigated using TGA. Crystal data for MIL-105ht: monoclinic space group C2/c with a = 19.653(1) Å, b = 9.984(1) Å, c = 6.970(1) Å, β = 110.67(1)° and Z = 4. Crystal data for MIL-105lt: orthorhombic space group Pnam with a = 17.892(1) Å, b = 11.165(1) Å, c = 6.916(1) Å and Z = 4.  相似文献   

17.
Microstructures and fracture toughness of arc-melted and directionally solidified Mo–ZrC eutectic composites were investigated in this study. Two kinds of directionally solidified composites were prepared by spot-melting and floating zone-melting. Microstructure of the arc-melted composite (AMC) consists of equiaxed eutectic colonies, in which ZrC particles are dispersed. The spot-melted composite (SMC) exhibits spheroidal colony structure, which is rather inhomogeneous in size and morphology. ZrC fibers in the eutectic colonies are aligned almost parallel to the growth direction. Well aligned, homogeneous columnar structure with thin ZrC fibers evolves in the floating zone-melted composite (FZC). Texture measurement by X-ray diffractometry revealed that the growth direction of Mo solid solution (MoSS) in FZC is preferentially 〈100〉, while that of SMC is scattered. Fracture toughness KQ evaluated by three point bending test using the single edge notched beam method is >13 MPa m1/2 for AMC, 20 MPa m1/2 for SMC and 9 MPa m1/2 for FZC. Intergranular fracture along colony boundaries is often observed in AMC. In contrast, transgranular fracture is dominant in SMC and FZC, although significant gaps caused by intergranular fracture are occasionally observed in SEM micrographs of SMC. Fracture surface in FZC is wholly flat. Pull-out of ZrC occurs owing to Mo/ZrC interfacial debonding in intergranularly fractured regions of AMC and SMC.Coarse elongated colonies in SMC and FZC induce transgranular fracture instead of intergranular fracture. Intergranular fracture and interfacial debonding in AMC and SMC causes frequent crack deflection accompanied by ligament formation and crack branching, which is responsible for the high fracture toughness of the composites. Preferred 〈100〉 growth of MoSS phase in FZC leads to brittle {100} cleavage fracture associated with low fracture toughness.  相似文献   

18.
《Materials Research Bulletin》2006,41(9):1673-1680
The high pressure synthesis, structure and magnetic properties of Ca25Co22O56(OH)28 are reported. The compound has a misfit structure, consisting of double, square calcium oxide hydroxide rock-salt-like layers between hexagonal CoO2 layers. The misfit compound crystallizes in the monoclinic space group C2/m, and can be characterized by the coexistence of two subsystems with common a = 4.893(5) Å, c = 8.825(9) Å and β = 95.745(8) parameters, and different b parameters: bRS = 4.894(5) Å, and bHEX = 2.809(3) Å, for the rock-salt and hexagonal type planes, respectively. The compound shows Curie–Weiss paramagnetism with an antiferromagnetic Weiss temperature of −43 K and a reduced Co moment. Substantial deviations from Curie–Weiss behavior are seen below 50 K with no indication of magnetic ordering. No superconductivity was observed down to a temperature of 2 K.  相似文献   

19.
《Materials Research Bulletin》2006,41(11):2168-2180
The (C2N2H10)0.5[FexV1−x(HPO3)2] (x = 0.26, 0.52 0.74) compounds have been obtained by mild solvothermal conditions in the form of micro-crystalline powder with brown color. The crystal structures were refined by X-ray powder diffraction data using the Rietveld method. The compounds crystallize in the monoclinic system, space group P2/c with the unit-cell parameters, a = 9.262(5) Å, b = 8.823(5) Å, c = 9.714(6) Å, β = 120.84(3)°; a = 9.245(1) Å, b = 8.823(1) Å, c = 9.698(1)Å, β = 120.80(1)° and, a = 9.254(4)Å, b = 8.822(4)Å, c = 9.702(4)Å, β = 120.73(3)° for (C2N2H10)0.5[Fe0.26V0.74 (HPO3)2] (1), (C2N2H10)0.5[Fe0.52V0.48(HPO3)2] (2), and (C2N2H10)0.5[Fe0.74V0.26(HPO3)2] (3). The compounds show an open crystalline structure with three-dimensional character, whose formula for the anionic inorganic skeleton is [M(HPO3)2]2−. The inorganic framework is formed by [MO6] octahedra inter-connected by phosphite groups. The structure of the compounds exhibits channels extended along the [1 0 0] and [0 0 1] directions and the ethylendiammonium cations are located inside these channels, linked through hydrogen bonds and ionic interactions. The infrared spectra show the bands corresponding to the stretching (P–H) vibration of the phosphite group and the band corresponding to the deformation mode of the ethylendiammonium cation, δ(NH3+). The thermal and thermodiffractometric behavior show that the compounds are stable up to approximately 300 °C, at higher temperatures the decomposition of the crystal structure by calcination of the organic cation starts. The diffuse reflectance spectra show bands of the V3+ ion (d2), and a band of the Fe3+ ion (d5), in a slightly distorted octahedral symmetry. The values of the Dq and Racah parameters (B and C) have been calculated for the V(III) cation. Magnetic measurements were performed on a powdered sample from 5 to 300 K at magnetic fields 1000, 500 and 100 G, in the ZFC and FC modes. At the magnetic field of 1000 G antiferromagnetic interactions were observed, but at 100 G have been detected higher values of the χm in the FC mode than those observed in the ZFC one, indicating the existence of a dominant ferromagnetic component at low temperature. The magnetization measurements show hystheresis loops at 5 K, with values of the remanent magnetization and coercive field of 1.91 emu/mol and 23 Gauss for (1), 25 emu/mol and 300 Gauss for (2), and 3 emu/mol and 50 Gauss for the compound (3).  相似文献   

20.
Using zwitterionic hybrid polymers as adsorbent, the adsorption kinetics and isotherm, thermodynamic parameters of ΔG, ΔH and ΔS for the removal of Pb2+ from aqueous solution were investigated. It is indicated that the adsorption of Pb2+ ions on these zwitterionic hybrid polymers followed the Lagergren second-order kinetic model and Freundlich isotherm model, demonstrating that the adsorption process might be Langmuir monolayer adsorption. The negative values of ΔG and the positive values of ΔH evidence that Pb2+ adsorption on these zwitterionic hybrid polymers is spontaneous and endothermic process in nature. Moreover, the zwitterionic hybrid polymers produced reveal relatively higher desorption efficiency in 2 mol dm?3 aqueous HNO3 solution, indicating that they can be recycled in industrial processes. These findings suggest that these zwitterionic hybrid polymers are the promising adsorbents for Pb2+ removal and can be potentially applied in the separation and recovery of Pb2+ ions from the waste chemicals and contaminated water of lead-acid rechargeable battery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号