首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Implementation of nanofiltration (NF) and reverse osmosis (RO) processes in treating traditional water sources can provide a steady‐state level of removal that eliminates the need for regeneration of ion exchange resins or granular activated carbon. Moreover, RO can help meet future potable water demands through desalination of seawater and brackish waters. The productivity of membrane filtration is severely lowered by fouling, which is caused by the accumulation of foreign substances on the surface and/or within pores of membranes. Microbial fouling, or biofouling, is the growth of microorganisms on the membrane surface and on the feed spacer as present between the envelopes. The fouling of membranes has demanded and continues to demand considerable attention from industry and research communities. Many of these applications use membranes in a spiral wound configuration that contains a feed spacer. The goal of this project was to develop low‐biofouling polypropylene (PP) spacers through the functionalization of PP by a spacer arm with metal chelating ligands charged with biocidal metal ions, investigate the use of this metal‐charged polypropylene (PP) feed spacers that target biofouling control, and to use some traditional and one novel techniques to autopsy the membranes after filtration to gain a better understanding of the biofouling mechanism and how the modified spacers are affecting it. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
The adhesion of Escherichia coli, Pseudomonas putida and Acinetobacter calcoaceticus cells to Microdyn-Nadir ultrafiltration membranes of various chemical nature: PS100 (polysulfone), P005 (polyethersulfone), C100 (regenerated cellulose) was studied. It was shown that an adhesiveness of the microorganisms to the membranes essentially depends on hydrophobic/hydrophilic properties of both the cells and membranes. In particular, it was found that the adhesion of relatively hydrophilic E. coli to membrane surfaces is essentially lower comparing with the adhesion of more hydrophobic P. putida, or A. calcoaceticus cells. In a turn the microorganisms attachment to more hydrophobic polyethersulfone and polysulfone membranes is higher than to hydrophilic cellulose one. It was shown that the volume fluxes of membranes with adhesive microorganisms dropped while samples were kept in contact with natural surface water due to increasing of cell number on membrane surface. In attempts to reduce membrane biofouling, TiO2 particles were deposited on membrane surface with following ultraviolet (UV) irradiation at 365 nm. It was shown that due to photobactericidal effect the fluxes of surface modified membranes were 1.7–2.3 times higher comparing with those for control membrane samples (without TiO2 deposition and UV treatment).  相似文献   

3.
《Desalination》2007,202(1-3):45-52
This paper describes the characterization and evaluation of various RO/NF membranes for the treatment of seasonally brackish surface water with high organic contents (TOC ≈21 mg/L). Twenty commercially available RO and NF membranes were initially evaluated by performing controlled bench-scale flat-sheet tests and surface characterization. Based on the results, four low pressure RO membranes were selected for use in the pilot study. The surface characterization revealed that each of four selected membranes had unique surface characteristics to minimize membrane fouling. Specifically, the LFC1 membrane featured a neutral or low negative surface to minimize electrostatic interactions with charged foulants. The X20 showed a highly negatively charged surface, and thus, was expected to perform well with feed waters containing negatively charged organics and colloids. The BW30FR1 exhibited a relatively neutral and hydrophilic surface, which could be beneficial for lessening organic and/or biofouling. The SG membrane had a smooth surface that made it quite resistant to fouling, particularly for colloidal deposition. In the large-scale pilot study using single element, all of the four membranes experienced a gradual increase in specific flux over time, indicating no fouling occurred during the pilot study. The deterioration of permeate water quality such as TDS was also observed over time, suggesting that the integrity of the membranes might be compromised by the monochloramine used for biofouling control.  相似文献   

4.
郑甜甜  黄丹  班允赫  刘蕊  张阳 《辽宁化工》2013,(10):1181-1184
水中微生物及其代谢产物沉积吸附在膜表面,进而生长繁殖,形成了膜生物污染。膜生物污染的控制已经成为学者们研究的热点之一,而基于驱散群体感应体系对膜生物污染进行控制是国内外新兴的研究课题之一。本文综述了传统的膜生物污染控制方法,并阐述了基于驱散群体感应体系控制膜生物污染的研究新进展,并提出前景展望。  相似文献   

5.
盛鹏 《清洗世界》2012,(5):4-6,23
某电厂在高参数长周期运行后超滤系统膜组件存在严重的生物污损和铁污染,确定采用碱洗法和酸洗法两种方案清洗滤膜。经两种方案超滤膜化学清洗方案比较发现,酸洗法效果显著,碱洗法效果不明显。经酸洗后,单套超滤膜系统压差降至15~20kPa,产水流量达到100~122t/h。  相似文献   

6.
The adhesion property of Pseudomonas putida on reverse osmosis (RO) membranes was systematically investigated using the asymmetrical flow field-flow fractionation (AsFl-FFF). The adhesion of P. putida on two different RO membranes was investigated by varying the salt concentration of carrier solution to evaluate the effect of ionic strengths and membrane characteristics on the biofouling potential of RO membranes. The elution peak in terms of peak retention time and area obtained from AsFl-FFF analysis was used to evaluate the adhesion tendency of P. putida under different solution ionic conditions. Results showed that P. putida was favorably attached to RO membranes at higher ionic strengths. Hydrophobic RO membrane exhibited more adhesive property to P. putida compared to the tested hydrophilic membrane under the lower ionic strength condition. The effect of solution ionic strength on the adhesion tendency was more influential than membrane characteristics. In addition, the influence of ionic strength variation on adhesion tendency was more sensitive to hydrophilic membranes than hydrophobic membranes.  相似文献   

7.
Membrane separation has become an important technology to deal with the global water crisis. The polymerbased membrane technology is currently in the forefront of water purification and desalination but is plagued with some bottlenecks. Laminated graphene oxide(GO) membranes exhibit excellent advantages in water purification and desalination due to the single atomic layer structure, hydrophilic property, rich oxygen-containing groups for modification, mechanical and chemical robust, anti-fouling properties, facile and large-scale production, etc. Thus the GO-based membrane technology is believed to offer huge opportunities for efficient and practical water treatment. This review systematically summarizes the current progress on the water flux and selectivity intensification, stability improvement, anti-fouling and anti-biofouling ability enhancement by structural control and modification. To improve the performance of the laminated GO membrane, interlayer spacing tunability and surface modification are mainly used to enhance its water flux and selectivity. It is found that the stability and biofouling also block the service life of the GO membrane. The crosslinking method is found to effectively solve the stability of GO membrane in aqueous environment. Introducing nanoparticles is a widely used method to improve the membrane biofouling ability. Overall, we believe that this review could provide benefit to researchers in the area of GO-based membrane technology for water treatment.  相似文献   

8.
《分离科学与技术》2012,47(16):4099-4112
A 0.22 µm polyethersulfone microfiltration membrane was modified using acrylic acid irradiated with UV light. The degree of grafting (DG) was confirmed by FTIR spectroscopy, which varied from 21 to 568 µg/cm2 for differing irradiation times and initial monomer concentrations. The contact angle of the modified membranes was at least 10° less than the unmodified PES membrane. Modification filled the pores with copolymer, and decreased the permeability of the membrane. However, following the filtration of E. coli, and membrane cleaning, the flux recovery was 100% for the modified membranes and only 50% for the unmodified membranes. Thus, the modification helped in showing reversible biofouling and higher flux recovery.  相似文献   

9.
膜生物反应器污水处理过程中膜生物污染的研究进展   总被引:18,自引:2,他引:18  
许坚  许振良 《水处理技术》2002,28(3):125-128
本文论述了用于污水处理的膜生物反应器的膜污染及其影响因素,同时,重点分析了膜生物污染的形成机理、微生物粘附和繁殖生长,并讨论了膜的生物污染现象、形成过程、危害以及防治措施。  相似文献   

10.
申向  刘开全  刘鹏  姚思杰  吕妮娜  张永金  汪帆 《化工进展》2019,38(12):5427-5434
以甲基丙烯酸甲酯(MMA)和天然辣素8-甲基-N-香草基-6-壬烯酰胺(Capsa)为单体,通过自由基聚合合成辣素衍生物PMMA-Capsa。将PMMA-Capsa与聚偏氟乙烯(PVDF)共混,通过非溶剂诱导相转化法制备PVDF/PMMA-Capsa分离膜,系统地研究了PMMA-Capsa含量对所制备的分离膜表面化学组成、形态结构、亲水性能、抗菌性能及渗透性能的影响。结果表明在成膜过程中PMMA-Capsa倾向于分布在分离膜的表面和孔道表面。随着铸膜液中PMMA-Capsa含量的增加,所制备的分离膜断面结构中海绵层结构逐渐消失,分离膜容易形成粗糙的微孔状表面。PMMA-Capsa的引入使分离膜表面水接触角从88.4°降低到73.1°。渗透实验结果表明分离膜的纯水通量随着PMMA-Capsa含量的增加而增加,而对牛血清蛋白(BSA)的截留率逐渐降低,所制备的PVDF/PMMA-Capsa分离膜的通量恢复率高于纯PVDF膜。PVDF/PMMA-Capsa分离膜具有优异的抗菌性能,对金黄色葡萄球菌的抗菌效率最高可达97.2%。  相似文献   

11.
Biofouling, a result of protein adsorption and cell adhesion on a surface, is detrimental to membrane performance. The objective of this study is to modify the polycaprolactone (PCL) membrane surface with poly(ethylene glycol) (PEG) to prevent fibroblast adhesion. To achieve this goal, oxygen plasma and PEG(400)-monoacrylate were used to graft the PEG onto the membrane surface through covalent bonding. Various plasma treatment conditions were investigated to optimize the PEG-grafting quality and to achieve minimum fibroblast adhesion. After the treatment, the water contact angle decreased significantly. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectra indicated that PEG was successfully grafted onto the PCL membrane with the appearance of the PEG characteristic peaks. X-ray photoelectron spectroscopy (XPS) revealed that different plasma powers and treatment times changed the surface composition of membranes. To evaluate the applicability of this new strategy for the prevention of biofouling, NIH 3T3 fibroblast was used as a model biofoulant. Cell adhesion and morphology studies indicate that either lower plasma power or shorter treatment time is able to improve resistance to the cell adhesion. This simple and efficient method can be applied to inhibit biofouling on the membrane surface.  相似文献   

12.
Polyethersulfone (PES) was modified by blending it with polyaniline (PANI) nanoparticles to improve the membrane performance. Three types of membranes: PES (controlled sample), PES-PANI self-synthesised, and PES-PANI (commercial), were evaluated by direct interaction with BSA, humic acid, silica nanoparticles, Escherichia coli and Bacillus bacteria. The surface hydrophilicity of the modified PES membranes was enhanced by the addition of PANI nanoparticles and showed improved fouling resistance and a high flux recovery ratio as well as improvement in BSA and humic acid rejection even with higher pore sizes. The modified membrane also showed less attack from the bacteria, demonstrating improved biofouling activity.  相似文献   

13.
The influence of (1.5 mg/mL) of N-acetylcysteine (NAC), a non-antibiotic, mucolytic agent, on the biofouling of a reverse osmosis (RO) membrane by a multi-species culture (four environmental strains) of biofilm forming bacteria was studied. NAC was found to considerably suppress the formation of the biofilm on the RO membrane. The inhibitory effect of NAC on biofilm formation was verified by image based studies. There was over a 70% reduction in biofilm surface coverage when grown in the presence of NAC. Similarly, the average thickness and total biomass content of the biofilm formed in presence of NAC were significantly less than those of the control. These results suggest that NAC could be a potential agent for the control of biofouling of a RO membrane. However, the chemical stability, potential toxicity and consistent performance of NAC in the field will have to be further investigated for optimization of its use on a field scale.  相似文献   

14.
《分离科学与技术》2012,47(7):1475-1487
Abstract

The biofouling potential is one of the important factors to design and to select membranes for water and wastewater treatment. In this investigation, the effect of membrane surface properties during the attachment of S. cerevisiae cells was examined using a laboratory‐scale membrane filtration cell enabling direct microscopic observation of microbial cell deposition. The experimental results from 6 commercially available membranes showed that the initial adhesion rate, k d , was affected by the zeta potentials, hydrophobicity, and roughness of membrane surfaces. The k d value was significantly lower at the membrane which had more negative, hydrophilic, and smooth surfaces. The results will be helpful to minimize the time for selecting membranes in different situations, and for testing the performance of newly designed membranes.  相似文献   

15.
《分离科学与技术》2012,47(7):1345-1370
Abstract

A membrane bioreactor (MBR) combines membrane separation and biological treatment, normally involving the activated sludge process, in municipal wastewater treatment. Despite excellent performance over years of full‐scale operation, the interactions between microbes and the membrane in the MBR process, which determine its design and operational criteria, remain unclear. This report reviewed research regarding how numerous process parameters impact biofouling rates and, in particular, the possible contribution of microbial products to biofouling. This study also characterized different fractions of microbial products and assessed their potential affect on membrane fouling.  相似文献   

16.
Continuous ultrafiltration of synthetic waste water containing peptone was carried out by using positively and negatively charged polyacrylonitrile membranes. The filtration experiments were operated in cross-flow mode under 10 kPa of applied pressure. The filtration properties of the charged membranes were compared with those of uncharged polyacrylonitrile ultrafiltration membranes having similar molecular sieve characteristics and membrane structure to the charged ultrafiltration membranes. During the continuous filtration, the filtration rate decreased and the operation pressure increased because of the formation of a peptone gel layer on the membrane surface. It was found that, for the positively charged membrane, the decrease in the filtration rate of the charged membranes was smaller than that of the uncharged membrane. In addition, the positively charged membrane maintained the initial operation pressure during the filtration. The reduction of fouling in the positively charged membrane was discussed by analyzing the gel components on the membrane surface.  相似文献   

17.
A major problem to be addressed with thin composite films used in processes such as coatings or water purification is the biofouling of the surface. To address this problem in a model system, functionalized polyaramide membranes containing an atom transfer radical polymerization (ATRP) initiator were synthesized as a versatile approach to easily modify the surface properties of the polyaramide. Poly(methacrylic acid) brushes were grown using surface initiated ATRP followed by the functionalization of the poly(methacrylic acid) brushes with different side-chains chosen to reduce adhesion between the membrane and foulant. The relation between membrane fouling and the physicochemical properties of the surface was investigated in detail.  相似文献   

18.
Reverse osmosis (RO) is one of the multiple pressure-driven membrane separation processes used primarily for the production of high purity water for various industries, including food processing. Biofilm growth in the spiral-wound membrane module, commonly referred to as biofouling, reduces the efficiency to produce water. Biofilm accumulation and removal using chemical cleaning on RO membranes were studied using magnetic resonance imaging (MRI) techniques. Additionally, a previously validated biofilm simulation model, which is based on a lattice Boltzmann platform, was modified to account for cleaning operations. The spatial and velocity MRI experimental results captured biofilm distribution and water flow within the fouled membrane modules and subsequent changes in the biofilm distribution and water flow due to cleaning. Cleaning was simulated by accounting for reductions in the biofilm cohesive strength in the numerical model. Qualitative and quantitative comparisons between the experimental and simulated images showed good agreement.  相似文献   

19.
The application of “active-layer-facing-draw-solution” (AL-DS) mode, which allows a considerably high water flux in forward osmosis (FO) processes, is hindered by severe fouling occurring within the porous support of the FO membranes. We designed a series of “three-dimensionally” antifouling FO membranes by an extremely convenient and scalable approach, by using in situ reduced aliphatic polyketone (PK) membranes (rPK) and the silver-nanoparticles-immobilized rPK-Ag membranes as the substrates for thin-film composite (TFC) FO membrane preparation. This modification imparted enhanced hydrophilicity compared with the original PK-TFC membrane, without affecting the morphology and transport properties. Benefiting from the three-dimensional antifouling structure, the modified TFC membranes (i.e., rPK-TFC and rPK-Ag-TFC membranes) demonstrated excellent and comprehensive fouling resistance towards a variety of organic foulants, as well as biofouling resistance towards Escherichia coli. These results provide useful insights into the fabrication of antifouling FO membranes for water purification purposes and pressure retarded osmosis (PRO) process.  相似文献   

20.
In this study, a novel basalt embedded fiber membranes was prepared by the electrospinning method. The effects of the feed rate, voltage, tip to collector distance, and the basalt content on the prepared composite fiber membranes were investigated and optimized using the response surface method. Four models were built to compare the fibers in terms of deionized water flux (DWF), activated sludge flux, chemical oxygen demand (COD) removal, and porosity of fiber membranes. All the developed models were significant and adequately precise. The maximum flux of DWF was obtained when the voltage was 17.25 kV, the tip to collector distance of 19 cm, and a basalt content in polymer of 1.25%. COD removal decreased at higher voltage values as the feed rate increased. The porosity, pore size, and the contact angle values decreased for basalt embedded fiber membrane. The increases in the basalt percentage in polymer increased the hydrophilicity of the fiber. The flux decline for the basalt embedded fiber membrane was compared with the pristine fiber membrane. The permeate fluxes of pristine and basalt embedded fiber membranes were 42.3 and 59.6 L/m2/h, respectively. The biofouling performances of pristine and basalt embedded fiber membranes were also examined. Irreversible fouling decreased from 42.9% to 8.0%, and reversible fouling increased from 56.5% to 91.1% after modification of the membrane with basalt powder. Scanning electron microscopy with energy dispersive X-ray analysis (SEM–EDX) analysis showed that basalt powder was successfully embedded into polyether sulfone polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号