首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-stage Stirling Cryocooler has been developed and tested for cooling IR sensors in space application. The concept uses an opposed piston linear compressor to drive the two-stage Stirling expander. The configuration used a moving coil linear motor for the compressor as well as for the expander unit. Electrical phase difference of 80 degrees was maintained between the voltage waveforms supplied to the compressor motor and expander motor. The piston and displacer surface were coated with Rulon an anti-friction material to ensure oil less operation of the unit. The present article discusses analysis results, features of the cryocooler and experimental tests conducted on the developed unit. The two-stages of Cryo-cylinder and the expander units were manufactured from a single piece to ensure precise alignment between the two-stages. Flexure bearings were used to suspend the piston and displacer about its mean position. The objective of the work was to develop a two-stage Stirling cryocooler with 2 W at 120 K and 0.5 W at 60 K cooling capacity for the two-stages and input power of less than 120 W. The Cryocooler achieved a minimum temperature of 40.7 K at stage 2.  相似文献   

2.
This paper presents experimental results and numerical evaluation of a Vuilleumier (VM) type pulse tube cryocooler. The cryocooler consists of three main subsystems: a thermal compressor, a low temperature pulse tube cryocooler, and a Stirling type precooler. The thermal compressor, similar to that in a Vuilleumier cryocooler, is used to drive the low temperature stage pulse tube cryocooler. The Stirling type precooler is used to establish a temperature difference for the thermal compressor to generate pressure wave. A lowest no-load temperature of 15.1 K is obtained with a pressure ratio of 1.18, a working frequency of 3 Hz and an average pressure of 2.45 MPa. Numerical simulations have been performed to help the understanding of the system performance. With given experimental conditions, the simulation predicts a lowest temperature in reasonable agreement with the experimental result. Analyses show that there is a large discrepancy in the pre-cooling power between experiments and calculation, which requires further investigation.  相似文献   

3.
This paper presents a Computational Fluid Dynamics (CFD) analysis of a novel free-piston Stirling cryocooler that uses a pair of metal diaphragms to seal and suspend the displacer. The diaphragms allow the displacer to move without rubbing or moving seals. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicated the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. The diaphragm’s large diameter and short stroke produces a significant radial component to the oscillating flow fields inside the cryocooler which were not modelled in the one-dimensional analysis tool Sage that was used to design the prototypes. Compared with standard pistons, the diaphragm geometry increases the gas-to-wall heat transfer due to the higher velocities and smaller hydraulic diameters. A Computational Fluid Dynamics (CFD) model of the cryocooler was constructed to understand the underlying fluid-dynamics and heat transfer mechanisms with the aim of further improving performance. The CFD modelling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. This paper presents details of a CFD analysis used to model the flow and gas-to-wall heat transfer inside the second prototype cryocooler, including experimental validation of the CFD to produce a robust analysis.  相似文献   

4.
High cooling capacity Stirling cryocooler generally has hundreds to thousands watts of cooling power at liquid nitrogen temperature. It is promising in boil-off gas (BOG) recondensation and high temperature superconducting (HTS) applications. A high cooling capacity Stirling cryocooler driven by a crank-rod mechanism was developed and studied systematically. The pressure and frequency characteristics of the cryocooler, the heat rejection from the ambient heat exchanger, and the cooling performance are studied under different charging pressure. Energy conversion and distribution in the cryocooler are analyzed theoretically. With an electric input power of 10.9 kW and a rotating speed of 1450 r/min of the motor, a cooling power of 700 W at 77 K and a relative Carnot efficiency of 18.2% of the cryocooler have been achieved in the present study, and the corresponding pressure ratio in the compression space reaches 2.46.  相似文献   

5.
《低温学》2002,42(6-7):427-432
The purpose of this study is to analyze the characteristics of the linear compressor for Stirling cryocooler. To ensure high performance and long life of the free piston, free displacer Stirling cryocooler, the operating parameters of the linear compressor should be optimized. The experimental results show the operating frequency of the linear compressor has significant effect to the input power characteristics, and the compressor with higher charging pressure of working fluid has high pressure ratio. For the high performance of the linear compressor, compressor has uniform magnetic force with different stroke, and the optimal operating frequency with respect to the charging pressure.  相似文献   

6.
In this paper, an isothermal model is used for modeling the Stirling cryocooler. Various losses including regenerator imperfection thermal loss, piston finite speed loss, gas spring hysteresis loss, displacer shuttle heat loss, clearance heat pump loss, heat conduction loss, and flow viscosity loss are taken into consideration at the same time step, as they could interact with each other. Energy and exergy balance analysis of the cryocooler shows that the mechanical friction loss is the biggest mechanical loss; conduction loss is the biggest heat loss. Effects of parameters consisting of cold end temperature, hot end temperature, average pressure, rotation speed, displacer clearance size, phase shift between piston and displacer, and ratio between diameter and stroke of piston on the cryocooler's performance are investigated. It shows that, there is optimum displacer clearance size, optimum phase shift between piston and displacer, and optimum ratio between diameter and stroke of piston for the studied cryocooler. The isothermal model was verified by the PPC-102 Stirling cryocooler.  相似文献   

7.
A Stirling pulse tube cryocooler (SPTC) operating at the liquid-helium temperatures represents an excellent prospect for satisfying the requirements of space applications because of its compactness, high efficiency and reliability. However, the working mechanism of a 4 K SPTC is more complicated than that of the Gifford McMahon (GM) PTC that operates at the relatively low frequency of 1–2 Hz, and has not yet been well understood. In this study, the primary operating parameters, including frequency, charge pressure, input power and precooling temperature, are systematically investigated in a home-developed separate three-stage SPTC. The investigation demonstrates that the frequency and precooling temperature are closely coupled via phase shift. In order to improve the cooling capacity it is important to lower the frequency and the precooling temperature simultaneously. In contrast to the behavior predicted by previous studies, the pressure dependence of the gas properties results in an optimized pressure that decreases significantly as the temperature is lowered. The third stage reaches a lowest temperature of 4.97 K at 29.9 Hz and 0.91 MPa. A cooling power of 25 mW is measured at 6.0 K. The precooling temperature is 23.7 K and the input power is 100 W.  相似文献   

8.
This paper presents experimental results on a novel two-stage gas-coupled VM-PT cryocooler, which is a one-stage VM cooler coupled a pulse tube cooler. In order to reach temperatures below the critical point of helium-4, a one-stage coaxial pulse tube cryocooler was gas-coupled on the cold end of the former VM cryocooler. The low temperature inertance tube and room temperature gas reservoir were used as phase shifters. The influence of room temperature double-inlet was first investigated, and the results showed that it added excessive heat loss. Then the inertance tube, regenerator and the length of the pulse tube were researched experimentally. Especially, the DC flow, whose function is similar to the double-orifice, was experimentally studied, and shown to contribute about 0.2 K for the no-load temperature. The minimum no-load temperature of 4.4 K was obtained with a pressure ratio near 1.5, working frequency of 2.2 Hz, and average pressure of 1.73 MPa.  相似文献   

9.
The development of pulse tube coolers has progressed significantly during the past two decades. A single piston linear compressor is used to in order to reduce the size and mass of a high frequency pulse tube cryocooler. The pulse tube achieved a no-load temperature of 61 K and a cooling power of 1 W@80 K with an operating frequency of 80 Hz and an electrical input power of 50 W. By itself, the single piston compressor generates a large vibration, so a set of leaf springs with an additional mass is used to reduce the vibration. The equation relating the mass, the elasticity coefficient of leaf spring and the working frequency is obtained through an empirical fit of the experimental data. The vibration amplitude is reduced from 55 mm/s to lower than 5 mm/s by using a proper leaf spring. This paper demonstrates that a single piston compressor with vibration reduction provides a good choice for a PTC.  相似文献   

10.
Expansion work is generally wasted as heat in a pulse-tube cryocooler and thus represents an obstacle to obtaining higher Carnot efficiency. Recovery of this dissipated power is crucial to improvement of these cooling systems, particularly when the cooling temperature is not very low. In this paper, an efficient cascade cryocooler that is capable of recovering acoustic power is introduced. The cryocooler is composed of two coolers and a displacer unit. The displacer, which fulfills both phase modulation and power transmission roles, is sandwiched in the structure by the two coolers. This means that the expansion work from the first stage cooler can then be used by the second stage cooler. The expansion work of the second stage cooler is much lower than the total input work and it is thus not necessary to recover it. Analyses and experiments were conducted to verify the proposed configuration. At an input power of 1249 W, the cascade cryocooler achieved its highest overall relative Carnot efficiency of 37.2% and a cooling power of 371 W at 130 K. When compared with the performance of a traditional pulse-tube cryocooler, the cooling efficiency was improved by 32%.  相似文献   

11.
A mathematical model based on thermodynamic theory of variable mass is developed for the split Stirling refrigerator, in which, the whole machine is considered by one-dimensional approach while the processes in the regenerator are simulated by two-dimensional approach. First, the influence of the ideal frost layer distributions on the flow and heat transfer in the regenerator and the performance of the Stirling cryocooler are simulated. Then, the distribution of the contaminated water vapor and its coagulated and deposited process is qualitatively analyzed. Finally, the lifetime of the refrigerator is evaluated based on the calculated data. The results show that when the refrigerator is operated at uniform distribution of the water vapor partial pressure in the regenerator, the cooling capacity is reduced over 10% at about 631 h, and the power consumption of compressor is increased over 20% at about 1168 h. However, for the linear distribution of water vapor partial pressure, the refrigerator can work properly because the frost never reaches the criterion of failure. Also, it is found that when the Stirling cryocooler restarts after a shutdown, the cooling capacity is reduced by 10% once the frost mass is over 7.05 mg, and there is no cooling capacity once the frost mass reaches 41.2 mg.  相似文献   

12.
A thermally coupled two-stage Stirling-type pulse tube cryocooler (PTC) with inertance tubes as phase shifters has been designed, manufactured and tested. In order to obtain a larger phase shift at the low acoustic power of about 2.0 W, a cold inertance tube as well as a cold reservoir for the second stage, precooled by the cold end of the first stage, was introduced into the system. The transmission line model was used to calculate the phase shift produced by the cold inertance tube. Effect of regenerator material, geometry and charging pressure on the performance of the second stage of the two-stage PTC was investigated based on the well known regenerator model REGEN. Experimental results of the two-stage PTC were carried out with an emphasis on the performance of the second stage. A lowest cooling temperature of 23.7 K and 0.50 W at 33.9 K were obtained with an input electric power of 150.0 W and an operating frequency of 40 Hz.  相似文献   

13.
《低温学》2006,46(2-3):149-157
Since the next cryogenic infrared mission “JAXA/SPICA” employs advanced mechanical cryocoolers with effective radiant cooling in place of cryogen, the primary mirror, 3.5 m in diameter, and the optical bench can be maintained at 4.5 K for at least 5 years. First, the feasibility of the thermal design of the cryogenic system is presented. A 20 K-class Stirling cryocooler was then improved in cooling capacity and reliability for the mission, and the effects of contaminated working gas or new regenerator materials on cooling performance were investigated. Development of a new 3He-JT (Joule–Thomson) cryocooler for use at 1.7 K is also described, along with the successful results of a cooling capacity higher than the required 10 mW. A 4 K-class cryocooler was modified and developed for higher reliability over a five-year operational life and a higher cooling capacity exceeding the current 30 mW. Finally, we discuss a system for heat rejection from cryocoolers using thermal control devices.  相似文献   

14.
Over the last several years, Raytheon has made significant advances on two long-life cryocoolers designed for efficient operation on space platforms. The first is the Low-Temperature Raytheon Stirling/Pulse Tube 2-stage (LT-RSP2) hybrid cryocooler, which is capable of providing simultaneous cooling at 55 K and 10 K nominal first and second stage temperatures. The LT-RSP2 design was finalized in mid-2009, with fabrication of the prototype unit taking place in late 2009 and early 2010 and execution of the production program in 2011–2015. During this period the LT-RSP2 has undergone extensive characterization testing and has successfully been integrated with an optical bench. The second cryocooler is the Raytheon Advanced Miniature (RAM) cryocooler, a flight packaged single stage pulse tube cooler with an integrated surge volume and inertance tube. It has been designed for high frequency operation and has been fully optimized to make use of the Raytheon Advanced Regenerator, resulting in improved efficiency relative to previous Raytheon pulse tube coolers. In this paper, aspects of both the LT-RSP2 and RAM mechanical and thermodynamic designs will be presented as well as information regarding their capabilities and performance.  相似文献   

15.
The Vuilleumier (VM) refrigerator, known as heat driven refrigerator, is one kind of closed-cycle Stirling type regenerative refrigerator. The VM refrigerator with power being supplied by liquid nitrogen was proposed by Hogen and developed by Zhou, which shows great potential for development below 10 K. This paper describes the experimental development of a VM cryocooler operating below 8 K, which was achieved by using liquid nitrogen as a heat sink of middle cavity. The regenerator was optimized by using a part of metallic magnetic regenerator material Er3Ni to replace the lead sphere and a no-load temperature of 7.8 K was obtained. Then all the lead spheres were replaced by Er0.6Pr0.4 material and a no-load temperature of 7.35 K was obtained, which is the lowest temperature for this kind of refrigerator reported so far. The cooling power at 10 K is about 500 mW with a pressure ratio near 1.6 and a charge pressure of 1.8 MPa. Especially, the magnetic material Er0.6Pr0.4 was found to be a potential substitution for the conventional lead.  相似文献   

16.
6 W大冷量斯特林制冷机的实验研究   总被引:1,自引:1,他引:0  
基于实验分析了大冷量分置式斯特林制冷机的动力特性和热力特性,详细讨论了对制冷机性能有重要影响的参数如固有频率、工作频率、相位角、充气压力、排出器位移等.样机采用牛津型斯特林制冷机结构,在93 W输入功率下初步获得6 W/90 K的性能.  相似文献   

17.
Luwei Yang 《低温学》2008,48(11-12):492-496
Multi-stage Stirling-type pulse tube cryocoolers with high frequency (30–60 Hz) are one important direction in recent years. A two-stage Stirling-type pulse tube cryocooler with thermally coupled stages has been designed and established two years ago and some results have been published. In order to study the effect of first stage precooling temperature, related characteristics on performance are experimentally investigated. It shows that at high input power, when the precooling temperature is lower than 110 K, its effect on second stage temperature is quite small. There is also the evident effect of precooling temperature on pulse tube temperature distribution; this is for the first time that author notice the phenomenon. The mean working pressure is investigated and the 12.8 K lowest temperature with 500 W input power and 1.22 MPa average pressure have been gained, this is the lowest reported temperature for high frequency two-stage PTCS. Simulation has reflected upper mentioned typical features in experiments.  相似文献   

18.
A 3-stage adiabatic demagnetization refrigerator (ADR) (Shirron et al., 2012) is used on the Soft X-ray Spectrometer instrument (Mitsuda et al., 2010) on Astro-H (Takahashi et al., 2010) [3] to cool a 6 × 6 array of X-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system (Fujimoto et al., 2010) consisting of a superfluid helium tank, a 4.5 K Joule–Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes.  相似文献   

19.
This study presents the theoretical basis for the dynamics of a slug of liquid oxygen in a quartz tube when displaced by a pulsed magnetic field. The theoretical model calculated slug movement by balancing the forces due to magnetism, pressure, and damping and was verified with experimental data for a slug 1.3 cm long and 1.9 mm in diameter. During the experiments, the hidden slug length and damping factor were unknown, but quantifiable through the numerical solution. The hidden slug length accounted for the mass of LOX which cannot be seen during the experiment and was calculated as 10–14.5 cm. The damping factor was an empirical augmentation to represent increased damping from various phenomena and was calculated as 5.76–6.3. The experiments generated damped pressure waves of 6–8 Hz with maximum amplitudes of 0.8–1.3 kPa. Outside these ranges, the model indicated that the oscillation frequency decreased logarithmically with the hidden slug length, and the maximum amplitude decreased logarithmically with the damping factor. Measurement uncertainties of the visible length and slug initial position (0.8 mm) were also evaluated for their effects on the frequency and amplitude of the oscillations. The visible slug length did not seem to significantly affect the pressure waves, but the initial position strongly altered the amplitudes and mean of the oscillations. The predictive model matched the experiment well and could be used to design advanced flow control systems for cryogenic applications.  相似文献   

20.
He-3 is generally recognized for its ability to provide more excellent thermophysical performance than He-4, especially in the 4 K temperature range. However, this was not always the case in our preliminary experiments on a three-stage Stirling-type pulse tube cryocooler (SPTC). Our ongoing studies, as reported in this paper, demonstrate that the different working fluids also affect the performance through their phase shifting capability. This feature has been passed over in large part by researchers considering refrigerant substitution. Unlike previous theoretical analyses that focus primarily on regenerator losses, this report investigates the effects of the working fluid on the phase angle at the cold end in order to quantitatively reveal the relationship between the lowest attainable temperature and the cooling capacity. The analysis agrees well with our experimental results on a three-stage SPTC. While running with the operating parameters optimized for He-3, the lowest temperature of the SPTC decreased from 5.4 K down to 4.03 K. This is the lowest refrigeration temperature ever achieved with a three-stage SPTC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号