首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 156 毫秒
1.
本文提出了一种基于增强型LSTM神经网络(A-LSTM)的数字预失真线性化模型,以更好的补偿5G宽带射频功放的动态非线性特性。模型的输入层在引入延迟抽头模拟功放线性记忆效应的基础上,对每一个延迟抽头进行非线性级数展开用于补偿功放的非线性记忆效应,从而更好地抑制功放的动态非线性失真导致的带内失真以及带外频谱扩展等问题。为验证模型的有效性,本文采用100MHz的5GNR信号作为测试信号,对一个中心频率为2.6GHz的5G射频功放进行数字预失真线性化实验。实验结果表明,基于增强型LSTM神经网络数字预失真器的带外抑制可达16dB,相比于其他几种预失真器展现出更好的线性化效果,验证了基于增强型LSTM神经网络数字预失真器的有效性。  相似文献   

2.
提出了一种基于广义记忆型神经网络(GMNN)的数字预失真器非线性模型,以更好地抑制由于射频功放动态非线性导致的带内失真以及带外频谱扩展等问题。通过引入时间上的超前项,使得功放模型的记忆效应建模能力得以扩展,通过添加高阶非线性级数,使得功放非线性建模精度进一步提高。文中使用带宽为20 MHz 的4载波WCDMA 信号作为测试信号,对一个中心频率为460 MHz 的60W Doherty 射频功放进行数字预失真线性化实验。实验结果表明,广义记忆型神经网络数字预失真器的带外抑制可达19 dB,能更有效地抑制射频功放的带外频谱扩展,相比于其他几种预失真器展现出更好的线性化效果,验证了广义记忆型神经网络数字预失真器的有效性。  相似文献   

3.
提出了一种基于改进型径向基函数神经网络(MRBFNN)的数字预失真线性化模型,用于更为精确地矫正宽带射频功率放大器的动态非线性。该神经网络模型的输入层使用传统的延时抽头以补偿功放的线性记忆效应,同时对每个抽头进行级数展开用于补偿功放的非线性记忆效应,从而更好地抑制功放的动态非线性失真。文中使用WCDMA 三载波信号对一个460MHz 的Doherty 功率放大器进行数字预失真线性化实验。实验结果表明,与传统数字预失真线性化模型相比,基于改进型径向基神经网络的数字预失真线性化模型能更好地抑制宽带功放动态非线性引起的带外频谱再生,其三阶互调(IMD3)失真最多可以抑制23dB,大大提高了功放的线性度,验证了所提出的数字预失真线性化模型的有效性。  相似文献   

4.
在无线通信系统中,射频功放的非线性是信号失真与频谱增生的主要原因,尤其是对于采用64QAM、256QAM 等高峰均功率比的复杂调制系统,对射频功放线性度的要求越来越高;然而宽带射频功放中存在的强记忆效应严重地降低了基于传统非线性模型的数字预失真器的线性化性能。文章提出广义长短期记忆(LSTM)神经网络模型,通过输入的时序特性,从时间轴上进行模型迭代,利用LSTM模型独特的长短时序结构以更好地表征宽带射频功放的记忆效应,同时引入时间超前项以构建广义的LSTM模型,进一步增强其动态非线性建模能力。在不同超参数下的建模结果表明,该模型的归一化均方误差(NMSE)指标可达-42.2895 dB。最后,使用20 MHz 带宽的4 载波WCDMA信号,对中心频率1900 MHz 的50 W Doherty 功放进行预失真线性化实验验证。实验结果证实了基于广义LSTM神经网络模型的数字预失真器可以使互调分量降低达23.27 dB,大大优于记忆多项式等传统非线性模型的非线性校正性能。  相似文献   

5.
为了实现传输速率高达千兆比特每秒(Gbps)的目标,5G通信系统需要更宽的传输带宽和更高的调制度,这些对射频功放的线性度提出了更加苛刻的要求。必须对功放的非线性进行线性化。文中构建了一种基于实值时间卷积神经网络(Real-Valued Temporal Convolutional Networks,RVTCN)模型的数字预失真器。RVTCN模型利用扩大因果卷积(Dilated Causal Convolution, DCC)提取功放的当前时序信息,把记忆信息存储在残差块(Residual Block,RB)中,不断获取时序特征并保存于网络中。为了验证RVTCN线性化的性能,文中采用了100 MHz带宽的5G NR信号,对中心频率3.5 GHz的Doherty功放进行了预失真线性化实验验证。实验结果表明:该RVTCN模型具有射频功放的动态非线性行为建模能力,其归一化均方误差可达-40 d B;RVTCN预失真器对测试功放的相邻信道功率比(ACPR)改善可达19.5 d B左右。  相似文献   

6.
张能波  李凯 《微波学报》2020,36(5):66-69
研制了一款用于毫米波GaN 固态功放的预失真线性化器。采用预失真线性化技术,通过调整I、Q 两路正交电路(I 路由线性可调衰减器构成,Q 路由二极管非线性电路构成)的外加偏置电压,可以实现预失真线性化器的幅度和相位分别可调。将该线性化器与工作频率为30 GHz 的毫米波GaN 固态功放级联测试,双音激励信号频率间隔为5 MHz,三阶互调(IMD3)可以改善约10 dB。  相似文献   

7.
随着移动通信信号带宽的增加,传统功率放大器数字预失真线性化技术越来越受到采样率的限制。为了使线性化效果更好,文中提出了一种数字预失真和模拟预失真相结合的混合预失真器,利用模拟预失真宽带宽的特点和数字预失真线性化能力强的优势,把模拟预失真和数字预失真融合在一起,共同补偿功放的非线性。由于受实验设备采样率的限制,文中采用了带宽为60 MHz的5 G NR信号对一个中心频率为3.5 GHz的射频功放进行实验验证。实验结果表明:提出的混合预失真器不仅优于单独的数字预失真器和模拟预失真器的非线性矫正性能,而且还能改善数字预失真因采样率限制无法改善的带外互调失真。  相似文献   

8.
舒海燕  许高明 《数据通信》2023,(4):39-42+46
功放的非线性会导致信号的失真和频谱再生,因此数字预失真被认为是解决功放非线性的一个方法,但是由于信号的带宽越来越宽,且系统越来越复杂,这些传统的预失真方法已经无法满足需要,因此神经网络开始被应用于数字预失真。本文对LSTM,GRU,BiGRU网络建立数字预失真平台,使用1.9GHz的功放对5G-NR信号进行实验。实验结果表明:LSTM,GRU,BiGRU这三个模型都可以应用于线性化,并且ACLR最高可达17dB,因此这三个模型均可用于功放的非线性改善。  相似文献   

9.
射频功率放大器与生俱来的非线性是无线通信前端设计需要解决的核心问题之一。根据广义改进型Hammerstein功率放大器非线性模型,提出一种应用于射频功放线性化的新型数字预失真器——广义改进型Hammerstein(Generalized Augmented Hammerstein, GAH)预失真器,并给出了该预失真器的实现方法。另外,为了精确分析GAH 预失真器的性能,采用实际功放的输入输出数据进行仿真和实验。被测功放为中心频率1960 MHz,带宽40 MHz, 输出功率45 dBm的Doherty功放。仿真和实验证明:提出的数字预失真器不仅计算复杂度远低于记忆多项式(Memory Polynomial,MP)和分数阶记忆多项式(Fractional Memory Polynomial, FMP)预失真器,而且其线性化能力也强于AH、MP及FMP等预失真器。  相似文献   

10.
在并发双波段调制信号驱动下,射频功放的非线性更显著和复杂,对其进行线性化将面临新的问题。文中研究了低频波段和高频波段的同步性对线性化的影响,提出同步并发双波段射频信号生成方法,用于解决两频段信号加载时的不同步问题。文中使用1001型(中间两个载波空缺)CDMA2000信号和单载波WCDMA信号分别作为低频段和高频段的测试信号,施加到一个峰值功率为51dBm的Doherty功放上进行实验验证。实验结果表明:两频段不同步将造成无法使用数字预失真方法对功放进行线性化;在同步情况下,采用记忆多项式(MP)可显著提高并发双波段射频功放的线性度。  相似文献   

11.
5G 宽带功放数字预失真器(DPD)的FPGA 实现过程中,常遇到数字处理带宽不够和资源有限问题,对 此,文中提出一种基于双路并行数据流的数字预失真带宽扩展方法和基于Zynq Ultrascale+ MPSoC 的自动化模型优化 验证方法,可快速实现对5G 宽带功放线性化方案的优化。使用该并行处理结构的数字预失真器,克服了数字电路最 大时钟频率造成的对FPGA 线性化带宽的限制,使得数字预失真电路在每个时钟周期内可以处理更多的数据,不仅有 效地增加了数字处理带宽,而且降低了DPD 的功耗。然而,这种带宽增加以消耗更多硬件资源为代价,对此,文中同时 提出了对预失真非线性模型的在线自动优化方法,以简化非线性模型、降低DPD 的硬件资源开销。最后,在Zynq Ultrascale+ FPGA 实验平台上实现了具有两路并行数据处理的I-MSA 自优化数字预失真电路,采用100 MHz 的5G 新无 线电(NR)信号在2. 6 GHz 功率放大器上进行线性化实验验证,获得了满意的预失真性能,验证了所提方法的有效性。  相似文献   

12.
本文提出了一种宽带双极化金属锥阵列天线。该阵列天线以传统的旋转体天线结构为主体,通过在锥体底部开设四道正交的直通槽,以便在锥状单元内部形成可与地板间构成匹配谐振腔的开放式空腔结构。在阵列中,任意两个相邻的锥状单元之间可形成类似于Vivaldi天线的辐射缝隙结构。馈电采用同轴馈电方式,探针无弯折结构,金属锥体无弯折过孔。每个金属锥状单元独立,可极大简化加工、装配和维护过程。该天线具有两个正交极化,分别由左右和前后相邻单元构成。仿真结果表明,在频率范围为2~8GHz内,阵列大部分有源VSWR小于2,小部分端口有源VSWR小于2.5 (相对带宽为120%)。  相似文献   

13.
一种RF模拟预失真放大器的实现   总被引:4,自引:0,他引:4  
刘辉  官伯然 《微波学报》2005,21(6):50-53
预失真线性化技术理论上是最简单的 RF 功率放大器线性化技术。本文利用场效应管偏置于可变电阻区时的栅压控制变阻特性构成模拟射频预失真器,在对放大器线性化的同时还可提供一定的增益。为了验证电路的有效性,分别使用双音信号和 W-CDMA 信号进行测试,结果表明3阶互调改善9dB,邻道功率比(ACPR)改善 5dB。  相似文献   

14.
In this paper, we present a low-power high-performance digital predistorter (DPD) for the linearization of wideband RF power amplifiers (PAs). It is based on the novel FIR memory polynomial (FIR-MP) predistorter model, which significantly augments the performance of the conventional memory polynomial predistorter with the use of complex baseband digital FIR filter prior to the memory polynomial. The adjacent channel leakage ratio (ACLR) performance comparison between the conventional MP and the proposed FIR-MP is done based on simulations with multi-carrier modulated signals of 20 and 80 MHz bandwidths. The PA models used for the simulations are extracted from the measurements of a commercial \(1\,\hbox {W}\) GaAs HBT PA. At the ideal system-level simulations, the improvements in ACLR over the conventional MP are 7.2  and 15.6 dB, respectively, for 20 and 80 MHz signals. The choice of selection of various parameters of the predistorter along with the subsequent digital-to-analog converter (DAC) is presented. The impact of fixed-point representation is assessed using ACLR metrics, which shows that a wordlength of 14 bits is sufficient to obtain ACLR beyond \(45\,\hbox {dBc}\) with a margin of \(10\,\hbox {dB}\). The proposed predistorter is synthesized in \(28\,\hbox {nm}\) fully-depleted silicon-on-insulator (FDSOI) CMOS process. It is shown that with a fraction of the power and die area of that of the MP a huge improvement in ACLR is attained. With an overall power consumption of 8.2 and 88.8 mW, respectively, for 20 and 80 MHz signals, the FIR-MP DPD proves to be a suitable candidate for small-cell base station PA linearization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号