首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
A five-cell 150 W air-feed direct methanol fuel cell (DMFC) stack was demonstrated. The DMFC cells employed Nafion 117® as a solid polymer electrolyte membrane and high surface area carbon supported Pt-Ru and Pt catalysts for methanol electrooxidation and oxygen reduction, respectively. Stainless steel-based stack housing and bipolar plates were utilized. Electrodes with a 225 cm2 geometrical area were manufactured by a doctor-blade technique. An average power density of about 140 mW cm–2 was obtained at 110 °C in the presence of 1 M methanol and 3 atm air feed. A small area graphite single cell (5 cm2) based on the same membrane electrode assembly (MEA) gave a power density of 180 mW cm–2 under similar operating conditions. This difference is ascribed to the larger internal resistance of the stack and to non-homogeneous reactant distribution. A small loss of performance was observed at high current densities after one month of discontinuous stack operation.  相似文献   

2.
A physico-chemical investigation of catalyst–Nafion® electrolyte interface of a direct methanol fuel cell (DMFC), based on a Pt–Ru/C anode catalyst, was carried out by XRD, SEM-EDAX and TEM. No interaction between catalyst and electrolyte was detected and no significant interconnected network of Nafion micelles inside the composite catalyst layer was observed. The influence of some operating parameters on the performance of the DMFC was investigated. Optimal conditions were 2 M methanol, 5 atm cathode pressure and 2–3 atm anode pressure. Power densities of 110 and 160 mW cm−2 were obtained for operation with air and oxygen, respectively, at temperatures of 95–100°C and with 1 mg cm−2 Pt loading.  相似文献   

3.
Comparative studies have been conducted to observe the characteristics of a single cell and a stack of direct methanol fuel cells (DMFC) at ambient conditions. The maximum power density of a single cell was about 70 mW/ cm2 at 2M methanol (CH3OH) of 3.75 cc/min and dry air of 250 cc/min at room temperature and atmospheric pressure. In a stack, on the other hand, the maximum power density of the stack was 85mW/cm2 which was about a 20% higher value. This could be attributed to higher internal temperature than that of the single cell: the temperature of single cell increased up to 35 °C, while the highest temperature of the stack was 69 °C. This is because the cell temperature in DMFC was autonomously increased by exothermal reaction such as chemical oxidation of CH3OH and oxygen reduction. The temperature was strongly dependent on the number of unit cells in a stack and the amount of electric load applied. In DMFC stacks, the performance of an individual cell showed uneven distribution when the electric load was increased and it was mostly influenced by different local concentration of reactants and non-uniform temperature  相似文献   

4.
A direct methanol/oxygen solid polymer electrolyte fuel cell was demonstrated. This fuel cell employed a 4 mg cm–2 Pt-Ru alloy electrode as an anode, a 4 mg cm–2 Pt black electrode as a cathode and an acid-doped polybenzimidazole membrane as the solid polymer electrolyte. The fuel cell is designed to operate at elevated temperature (200°C) to enhance the reaction kinetics and depress the electrode poisoning, and reduce the methanol crossover. This fuel cell demonstrated a maximum power density about 0.1 W cm–2 in the current density range of 275–500 mA cm–2 at 200°C with atmospheric pressure feed of methanol/water mixture and oxygen. Generally, increasing operating temperature and water/methanol mole ratio improves cell performance mainly due to the decrease of the methanol crossover. Using air instead of the pure oxygen results in approximately 120 mV voltage loss within the current density range of 200–400 mA cm–2 .  相似文献   

5.
Cold start and operation of a direct methanol fuel cell (DMFC) are investigated at sub-zero temperatures by using a 10-cell stack. The stack is manufactured with a hydrocarbon membrane to minimize the methanol crossover problem, which can be caused by use of high concentration methanol solutions. The stack is heated up for the cold start and operation only by heat of the exothermic reactions without any heating device and additional insulation means, to examine operation characteristics of the DMFC stack at low temperatures. The concentration of methanol solutions is selected in the range of 3-8 M, considering the freezing points of the solution for corresponding operation temperatures (−5 to −15 °C). Although the DMFC stack undergoes a sharp voltage drop and a significant performance decrease at the initial stage of the frozen condition, the self-heating DMFC are successfully operated at −5 and −10 °C in both constant current or constant voltage modes. The cold start-up time also is nearly independent of the operating modes. In contrast, the stack at −15 °C is barely started up only by a constant voltage mode with some voltage fluctuation. The DMFC stack after the cold operation exhibits the performance loss of about 45%. Such performance loss is mainly caused by degradation of the electrocatalysts.  相似文献   

6.
Solid-polymer electrolyte direct methanol fuel cells (SPE-DMFCs) employing carbon-supported Pt–Fe as oxygen-reduction catalyst to mitigate the effect of methanol on cathode performance while operating with oxygen or air have been assembled. These SPE-DMFCs provided maximum power densities of 250 and 120 mW cm–2 at 85 °C on operating with oxygen and air, respectively. The polarization data for the SPE-DMFCs and their constituent electrodes have also been derived numerically employing a model based on phenomenological transport equations for the catalyst layer, diffusion layer and the membrane electrolyte.  相似文献   

7.
The potential-current fuel cell characteristics of membrane electrode assemblies (MEAs) using hexafluorinated sulfonated poly(ether sulfone) copolymer are compared to those of Nafion® based MEAs in the case of proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC). The hexafluorinated copolymer with 60 mol% of monosulfonated comonomer based acid form membrane is chosen for this study due to its high proton conductivity, high thermal stability, low methanol permeability, and its insolubility in boiling water. The catalyst powder is directly coated on the membrane and the catalyst coated membrane is used to fabricate MEAs for both fuel cells. A current density of 530 mA cm?2 at 0.6 V is obtained at 70 °C with H2/air as the fuel and oxidant. The peak power density of 110 mW cm?2 is obtained at 80 °C under specific DMFC operating conditions. Other electrochemical characteristics such as electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry are also studied.  相似文献   

8.
The effect of carbon type, carbon loading and microporous layer structure in the microporous layer on the performance of a direct methanol fuel cell (DMFC) at low temperature was investigated using electrochemical polarization techniques, electrochemical impedance spectroscopy, scanning electron microscope and other methods. Vulcan XC-72 carbon was found to be most suitable as a microporous layer for low temperature DMFC. Maximum fuel cell performance was obtained utilizing a microporous layer with carbon loading of 1.0 mg cm−2 when air was used as an oxidant. A membrane electrode assembly with 1.0 mg cm−2 Vulcan XC-72 carbon with 20 wt.% Teflon in the cathode and no microporous layer in the anode showed a maximum power density of 36.7 mW cm−2 at 35 °C under atmospheric pressure. The AC impedance study proved that a cell with a dissymmetrical microporous layer structure had lower internal resistance and mass transfer resistance, thus obtaining better performance.  相似文献   

9.
Cone-shaped tubular anode-supported solid oxide fuel cells (SOFCs) and two-cell-stack based on NiO-YSZ traditional anodes direct utilization methane as fuel were successfully developed in this study. The single cell exhibited maximum power densities of 1.255 W cm−2 for hydrogen and 1.099 W cm−2 for methane at 800 °C, respectively. A stability test of the single cell was performed with different constant current densities at 700 °C in methane. The results indicated that the single cell can be operated stable at high current density in methane. And EDX results showed that there is no measurable coking effect of operation in methane at relatively high current density.A two-cell-stack based on the above-mentioned SOFCs was fabricated and tested by direct utilization of methane. Its typical electrochemical performance was investigated. The two-cell-stack provided a maximum power output of about 3.5 W (350 mW cm−2 calculated using effective cathode area) by directly using methane at 800 °C. The stack experienced 20 h durability testing. The results demonstrated that the stack was kept at around 1 V (J = 0.05 A cm−2) at 700 °C. The stack presented basically stably during the whole test, and the performance of the stack is acceptable for application.  相似文献   

10.
The electrodeposition of platinum and ruthenium was carried out on carbon electrodes to prepare methanol anodes with different Pt/Ru atomic ratios using a galvanostatic pulse technique. Characterizations by XRD, TEM, EDX and atomic absorption spectroscopy indicated that most of the electrocatalytic anodes consisted of 2 mg cm–2 of Pt–Ru alloy particles with the desired composition and with particle sizes ranging from 5 to 8 nm. Electrochemical tests in a single DMFC show that these electrodes are very active for methanol oxidation and that the best Pt/Ru atomic ratio in the temperature range used (50–110 °C) is 80:20. The influence of the relaxation time t off was also studied and it appeared that a low t off led to smaller particle sizes and higher performances in terms of current density and power density.  相似文献   

11.
Low Pt loading electrodes have been obtained by the direct mixing of electrocatalyst and Nafion® ionomer (for catalyst layer) and by the introduction of an intermediate hydrophobic carbon layer to optimize gas distribution. The influence of Teflon® content in the carbon layer has been studied and an optimum content of 20 wt% has been found. The behaviour of the improved electrodes as a function of temperature (70–95 °C) and gas (H2 and air) pressure (1–5 bar) has been evaluated in a 50 cm2 single cell. In air operation at 5 bar absolute pressure and 95 °C a maximum in the power density of about 450 mW cm–2 has been obtained.  相似文献   

12.
A low-cost fluorine-free proton conducting polymer electrolyte was investigated for application in direct methanol fuel cell (DMFC) mini-stacks. The membrane consisted of a sulfonated polystyrene grafted onto a polyethylene backbone. DMFC operating conditions specifically addressing portable applications, i.e. passive mode, air breathing, high methanol concentration, room temperature, were selected. The device consisted of a passive DMFC monopolar three-cell stack. Two designs for flow-fields/current collectors based on open-flow or grid-like geometry were investigated. An optimization of the mini-stack structure was necessary to improve utilization of the fluorine-free membrane. Titanium-grid current collectors with proper mechanical stiffness allowed a significant increase of the performance by reducing contact resistance even in the case of significant swelling. A single cell maximum power density of about 18 mW cm−2 was achieved with the fluorine-free membrane at room temperature under passive mode. As a comparison, the performance obtained with Nafion 117 membrane and Ti grids was 31 mW cm−2. Despite the lower performance, the fluorine-free membrane showed good characteristics for application in portable DMFCs especially with regard to the perspectives of significant cost reduction.  相似文献   

13.
The membrane electrode assembly (MEA) is the key component of a PEMFC stack. Conventional MEAs are composed of catalyzed electrodes loaded with 0.1–0.4 mgPt cm−2 pressed against a Nafion® membrane, leading to cell performance close to 0.8 W cm−2 at 0.6 V. Due to their limited stability at high temperatures, the cost of platinum catalysts and that of proton exchange membranes, the recycling problems and material availability, the MEA components do not match the requirements for large scale development of PEMCFs at a low cost, particularly for automotive applications.Novel approaches to medium and high temperature membranes are described in this work, and a composite polybenzimidazole–poly(vinylphosphonic) acid membrane, stable up to 190 °C, led to a power density of 0.5 W cm−2 at 160 °C under 3 bar abs with hydrogen and air. Concerning the preparation of efficient electrocatalysts supported on a Vulcan XC72 carbon powder, the Bönnemann colloidal method and above all plasma sputtering allowed preparing bimetallic platinum-based electrocatalysts with a low Pt loading. In the case of plasma deposition of Pt nanoclusters, Pt loadings as low as 10 μg cm−2 were achieved, leading to a very high mass power density of ca. . Finally characterization of the MEA electrical properties by Electrochemical Impedance Spectroscopy (EIS) based on a theoretical model of mass and charge transport inside the active and gas diffusion layers, together with the optimization of the operating parameters (cell temperature, humidity, flow rate and pressure) allowed obtaining electrical performance greater than 1.2 W cm−2 using an homemade MEA with a rather low Pt loading.  相似文献   

14.
A 100W PAFC stack with 12 cells was assembled using in-house developed PTFE-bonded gas diffusion porous carbon electrodes, graphite bipolar plates and aluminium external gas manifolds. The stack was operated for 1000h continuously with acid management, using H2 and air at 1bar and at 175°C. After completion of the test the stack was disassembled and the electrodes were characterized using X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma–atomic emission spectroscopy (ICP–AES) techniques. The XPS and ICP–AES results revealed the presence of platinum in the electrolyte matrix layers (SiC+PTFE) and carbon mat layers (carbon+PTFE), which were applied on the cathodes and the anodes, respectively. This clearly indicates that there was a migration of platinum from cathodes to anodes during the stack operation. This may have occurred when operating the stack at it's open circuit voltage (OCV) while taking measurements of stack voltage and curre nt for the I/V curves.  相似文献   

15.
Polymer electrolyte fuel cell stacks assembled with Johnson Matthey Fuel Cells and SolviCore MEAs based on the Aquivion™ E79‐03S short‐side chain (SSC), chemically stabilised perfluorosulphonic acid membrane developed by Solvay Solexis were investigated at CNR‐ITAE in the EU Sixth Framework ‘Autobrane' project. Electrochemical experiments in fuel cell short stacks were performed under practical automotive operating conditions at pressures of 1–1.5 bar abs. over a wide temperature range, up to 130 °C, with varying levels of humidity (down to 18% R. H.). The stacks using large area (360 cm2) MEAs showed elevated performance in the temperature range from ambient to 100 °C (cell power density in the range of 600–700 mWcm–2) with a moderate decrease above 100 °C. The performances and electrical efficiencies achieved at 110 °C (cell power density of about 400 mWcm–2 at an average cell voltage of about 0.5–0.6 V) are promising for automotive applications. Duty‐cycle and steady‐state galvanostatic experiments showed excellent stack stability for operation at high temperature. A performance comparison of AquivionTM and NafionTM‐based MEAs under practical operating conditions showed a significantly better capability for the Solvay Solexis membrane to sustain high temperature operation.  相似文献   

16.
TiO2 nanometric powders were prepared via a sol-gel procedure and calcined at various temperatures to obtain different surface and bulk properties. The calcined powders were used as fillers in composite Nafion membranes for application in high temperature direct methanol fuel cells (DMFCs). The powder physico-chemical properties were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and pH measurements. The observed characteristics were correlated to the DMFC electrochemical behaviour. Analysis of the high temperature conductivity and DMFC performance reveals a significant influence of the surface characteristics of the ceramic oxide, such as oxygen functional groups and surface area, on the membrane electrochemical behaviour. A maximum DMFC power density of 350 mW cm−2 was achieved under oxygen feed at 145 °C in a pressurized DMFC (2.5 bar, anode and cathode) equipped with TiO2 nano-particles based composite membranes.  相似文献   

17.
Several carbon blacks and graphite were investigated as candidates for diffusion layer preparation in polymer electrolyte fuel cell electrodes (PEFC). Single cell electrochemical characterizations under different working cell conditions were carried out on the electrodes by varying the kind of carbon in the diffusion layer. An improvement in cell performance was found by using Shawinigan Acetylene Black (SAB) as carbon, resulting in a measured power density of about 360 mW cm–2 in H2/air operation at 70°C and 1/1 bar. Pore size distribution and scanning electron microscopy analyses were carried out to help the understanding of the different behaviour of the investigated carbon diffusion layers.  相似文献   

18.
A silicon-based micro direct methanol fuel cell (μDMFC) for portable applications has been developed and its electrochemical characterization carried out in this study. Anode and cathode flowfields with channel and rib width of 750 μm and channel depth of 400 μm were fabricated on Si wafers using the microelectromechanical system (MEMS) technology. A membrane-electrode assembly (MEA) was specially fabricated to mitigate methanol crossover. This MEA features a modified anode backing structure in which a compact microporous layer is added to create an additional barrier to methanol transport thereby reducing the rate of methanol crossing over the polymer membrane. The cell with the active area of 1.625 cm2 was assembled by sandwiching the MEA between two micro-fabricated Si wafers. Extensive cell polarization testing demonstrated a maximum power density of 50 mW/cm2 using 2 M methanol feed at 60 °C. When the cell was operated at room temperature, the maximum power density was shown to be about 16 mW/cm2 with both 2 and 4 M methanol feed. It was further found that the present μDMFC still produced reasonable performance under 8 M methanol solution at room temperature.  相似文献   

19.
Direct alcohol alkaline fuel cells (DAAFC) are one of the potential fuel cell types in the category of low temperature fuel cells, which could become an energy source for portable electronic equipment in future. In the present study, a simple DAAFC stack has been developed and studied to evaluate the maximum performance for a given fuel (methanol or ethanol) and electrolyte (KOH) at various concentrations and temperatures. The open circuit voltage of the stack of four cells was nearly 4.0 V. A particular combination, 2 M fuel (methanol or ethanol) and 3 M KOH, results in maximum power density of the stack. The maximum power density obtained from the DAAFC stack (25 °C) was 50 mW cm–2 at 20 mA cm–2 for methanol and 17 mA cm–2 for ethanol. The stack power density corroborated with that obtained from a single cell, indicating there was no further loss in the stack.  相似文献   

20.
Electrodes for air-driven PEMFCs for transport applications have been developed. The structure of the electrodes has been specifically adapted to run with air as oxidant under near atmospheric pressure; such electrodes can be manufactured using conventional industrial methods and be easily scaled up. The technology has been demonstrated on a 50 cm2 electrode area, assembled together with a Nafion® 117 membrane. Electrodes with different platinum loading, namely 0.4 and 0.2 mg Pt cm–2, have been the subject of long duration tests which show a slow degradation of the cell performance. With air as oxidant at 180 kPa absolute pressure, 80°C as cell temperature and Nafion® 117 as membrane, a power density of 350 mW cm–2 has been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号