首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
硫酸烧渣综合回收磁选探索试验   总被引:1,自引:0,他引:1  
为了探索利用硫酸烧渣分离铁精矿的可能性,对某硫酸厂的4种硫酸烧渣样品进行了磁选探索试验。试验结果表明,对于含铁硫酸烧渣,直接采用磁选,富集效果不佳;经过分散处理后对铁的富集会有明显改善;磁选对于降低硫酸烧渣的含硫量效果明显。经过还原处理的样品获得了较好的指标,铁品位54.16%,回收率92.46%,可以作为炼铁的低品位原料或配料使用。  相似文献   

2.
云浮硫铁矿8万t硫酸厂设计炉原料含硫49%,烧渣可作球团炼铁之用,建议选矿工艺中采取调整药剂,增加药量,更换设备措施,使入炉料含硫为51%~51.5%并降低水分,烧渣可作粉末冶金材料,效益可大大提高。  相似文献   

3.
硫酸烧渣中铁浸取条件的研究及应用   总被引:3,自引:0,他引:3  
陶颖 《无机盐工业》2003,35(6):42-43
以硫酸烧渣、废酸为原料制取铁系化工产品。通过硫酸烧渣的活化焙烧及硫酸浓度、固液比、浸取时间等关键工艺条件的研究,得到最佳浸取条件:即烧渣与活化剂质量配比4:1,固液比0.25~0.30g/mL,反应时间40~50min,酸度50%~60%。渣中铁浸取率达到95%以上,浸取液可以直接用于制备铁系产品。  相似文献   

4.
江苏某化工厂排出的烧渣含铁一般50%左右,经我们试验,可将铁品位提高到61%,含硫则由0.96%降至0.34%。烧渣中还有1%左右的铜,必须使铜降至0.2%左右才可用作炼铁原料。为此,进行了除铜研究。l烧法样及研究方法烧渣呈黑灰色,疏松易碎,易团聚成蜂窝状。镜下观察,细粒石英浸染于赤铁矿、磁铁矿中,硬石膏和铜矿物也呈细粒嵌布于赤铁矿和磁铁矿中。烧渣的多元素分析和物相分析见表1、表人以上分析看出硫酸渣样中的矿物无明显的结晶面,分选的难度较大。矿样中的铜主要是结合氧化铜,采用常规的硫化黄药浮选法一酸浸法、离析一浮…  相似文献   

5.
贵州省煤系硫铁矿石选矿试验   总被引:2,自引:0,他引:2  
贵州煤系硫铁矿石矿物组分简单、易选,用单一的重选法和浮选法都能获得较好的分选指标,尤以重浮联合流程分选为佳。采用中矿再磨再选流程可以获得含硫45%的硫精矿.制酸后的烧渣含铁大于60%,可炼铁综合回收铁资源。  相似文献   

6.
柠檬酸亚铁是一种易吸收的高效铁制剂,介绍了以硫铁矿烧渣为原料,经过磁选、熟化、除杂等生产工艺制备柠檬酸亚铁。指出硫铁矿烧渣通过磁选,可提高烧渣中铁的富集,节约能耗;经过熟化处理实验,得到较佳条件:温度为170~200℃,熟化时间1~1.5h,使烧渣中铁的回收率增加。再经过除杂等工艺过程制得硫酸亚铁,并用NH4HCO3使之转化为FeCO3,最后与柠檬酸在80℃反应1h,可以制备出高纯、超细柠檬酸亚铁粉体。制备的产品纯度可达到99.7%以上,为有效、合理地利用该废弃资源提供了新的途径,达到了消除环境污染的目的。  相似文献   

7.
这是一种利用旋风炉焙烧硫铁矿粉生产铁块矿的方法,包括含硫铁矿矿物大于90%的硫铁矿粉、含CaO+MgO或SiO2成分的熔剂物料与硫铁矿烧渣细粉按规定比例混合形成混合料,混合料给入旋风炉中焙烧,含SO2的焙烧烟气经除尘、净化后制硫酸,液态渣经冷却、破碎、筛分得粒度、碱度符合炼铁要求的铁块矿。硫铁矿粉用旋风炉焙烧,烟气含尘量低,有利于其后的除尘、净化过程。焙烧过程温度高,燃烧速度快,硫的脱出率高,烧渣含硫可降到0.2%以下,铁含量大于60%,达以了炼铁对铁块矿的质量要求。液态渣冷却破碎后直接得到铁块矿。省去了粉矿的烧结过程,降低了成本,使硫铁矿中的铁资源得到充分有效的利用。  相似文献   

8.
黄铁矿烧渣重选法制铁精粉   总被引:7,自引:0,他引:7  
王广林 《硫酸工业》1995,(1):50-52,39
重选法处理黄铁矿烧渣制取铁精粉工艺简便可行,且具有投资小,占地少,生产操作及维护简便、指标稳定等优点。铁精粉总铁含量稳定在55%以上,产率(理论值)稳定在30%以上。  相似文献   

9.
由于制硫酸的原料来源及焙烧工艺的不同,烧渣含铁合硫也不一样,选铁脱硫的办法也不相同.综述了国内浇渣选矿现状,并提出了选铁除硫和在硫酸生产中采取精料政策等建议,以便更有效地回收铁的资源.烧渣中如果硫酸盐含量高,可采用湿法脱硫;而当硫化物含量高时,只有采用磁化焙烧-磁选工艺才能有效地脱硫。铁的选矿采用强磁选和重-浮联选可以获得较好指标。  相似文献   

10.
黄铁矿烧渣是宝贵的矿产资源,其中含50%左右的铁和一定数量的有色和稀有金属元素。由于其物理化学性质特殊,难于用传统的冶金方法处理,因此,烧渣的综合利用一直是重要的研究课题。回转炉生铁—水泥法是当前充分综合利用黄铁矿烧渣的方案之一。目前该工艺已在浙江省肖山和天津投入试生产,在其它地方也引起了很大的兴趣。它比高炉法处理优越,可以不用冶金焦,且解决了生铁含硫高的问题,得到的炉渣又是良好的水泥熟料。  相似文献   

11.
从硫铁矿烧渣用于炼铁这一角度探讨了烧渣利用的价值和意义。研究发现,用选矿方法处理硫铁矿烧渣.既不经济也不可行。可行的办法是将硫铁矿精矿品位精选到46%以上.从而使制酸烧渣的TFe含量大于60%,达到炼铁要求。  相似文献   

12.
介绍中远公司对贫硫铁矿综合利用的研究成果。彬(S)15%的贫硫铁矿浮选获得彬(s)46%的硫精矿的技术;硫精矿用沸腾炉的高温焙烧技术获得w(Fe)〉62%、加(S)〈4%的铁矿渣可满足钢厂所需铁精粉要求,年创经济效益1.5亿元;硫酸生产的余热蒸汽梯级利用,可新增效益1925万元/a,节约煤炭折标煤75kt/a,减排CO2 47.7kt/a。  相似文献   

13.
探讨了化学方法富集硫铁矿烧渣铁含量的可行性,以Na2S和NaOH对硫铁矿烧渣进行了处理,就药剂投放顺序、投药量及浸泡时间等因素对提高硫铁矿烧渣铁含量的影响进行了实验研究。硫铁矿烧渣的铁含量可从55.95%提高到64.79%。  相似文献   

14.
硫铁矿生产硫磺尾渣用于建筑涂料的生产研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用磁选分离方法从生产硫磺的硫铁矿尾渣中回收四氧化三铁精矿粉后,余下的废渣为铁、铝、硅、钙、镁的混合物,经加工配料可制备建筑外墙涂料。分析了尾渣的化学成分、矿物成分、粒度分布;对尾渣生产建筑外墙涂料的可行性进行了研究;叙述了尾渣制备外墙涂料的制备工艺并给出了优化的实验配方;对该方法的经济效益进行了评估与分析。实验结果证明,该方法使低品位硫铁矿生产硫磺工艺产生的尾渣得到全面利用,具有很好的经济与社会效益。  相似文献   

15.
李国斌  李亚军  苏毅 《陕西化工》2013,(11):2027-2029
以硫酸溶液浸出硫铁矿烧渣,可使硫、砷分别降低到0.35%,0.04%。正交实验表明,最佳工艺条件为:矿浆浓度30%,硫酸浓度为15%,反应时间120min,温度50℃,搅拌速度300r/min。  相似文献   

16.
《分离科学与技术》2012,47(5):783-791
The lead smelter slag may be regarded as an important secondary resource, since tons of the slag containing 10 to 25% Zn, 3% Pb and other minor valuable elements are discharged every year by industries. It is difficult to economically justify the recovery of valuable metals (mainly zinc) using traditional technologies. In this study, mineralogical reconstruction obtained by sulfidation roasting with pyrite and carbon in the presence of sodium carbonate was conducted to recover Zn from the lead smelter slag. The effects of temperature, dosage of sodium carbonate, carbon and pyrite, and the time on the formation of ZnS were studied by XRD and optimum condition was established. The average crystal size of ZnS obtained was 2.63 µm under the optimal condition and its existence as both sphalerite and wurtzite was confirmed. The flotation tests performed indicated that zinc sulfides produced could be separated from the treated slag. The zinc grade increased from 13.63 to 32.76% and a total zinc recovery of 88.17% was obtained in the open circuit flotation test.  相似文献   

17.
在硫铁矿制硫酸的生产过程中,同时伴生高温硫铁矿渣,含有大量余热。初步探讨了回收利用硫铁矿渣显热的途径,阐述了利用硫铁矿渣显热进行原料干燥的方案,并进行了热平衡计算,认为,采用该方案可回收利用硫铁矿渣显热约65%,从理论上讲是可行的。  相似文献   

18.
采用粉煤灰、工业废硫酸和硫铁矿渣为原料,通过自制的聚铁和聚铝,制备了不同Si/(Al+Fe)摩尔比的聚硅酸铝铁(PSAF)絮凝剂.实验结果表明:与传统无机盐絮凝剂相比,PSAF的絮凝效果较好,COD及色度去除率能达到78.62%和83.56%以上.实验得到PSAF最佳制备条件:Si/(Fe+Al)=1/20,Fe/Al...  相似文献   

19.
The inorganic makeup of coal and petroleum differ in several crucial ways. The origins of these differences include the disparate geologic environments of formation, the contrasting parent materials (plant versus planktonic) and hence distinct organic species, and the physical state of the fuels (solid versus liquid). The inorganic chemistry of petroleum is usually controlled by the type and abundance of its organic compounds (i.e., V, Ni, ± Fe-bearing porphyrins and S-bearing thiols, sulfides, disulfides, thiophenic derivatives, resins, and asphaltenes), with significant, though often smaller contributions from entrained mineral phases. This near balance of inorganic compositional control causes petroleum to form combustion/gasification (pyrochemical) slag and ash with a large number of elements (i.e., V, Ni, S, Fe, Ca, Na, K, Mg, Si, and Al) in significant relative concentrations. This balance provides also opportunities for large departures from any given “norm”. The inorganic chemistry of coal, on the other hand, is dominantly controlled by its contained detrital and authigenic mineral matter, with relatively small contributions from organically carried elements other than sulfur. Detrital minerals are those that survive the geological processes of weathering and transport, and hence are a small group of physically resistant and chemically stable minerals including quartz, clay minerals, and oxides of Fe and Ti. The most abundant authigenic minerals in coal include clay minerals, pyrite/marcasite, carbonates, Ca- and Fe-sulfates, and Fe-oxides and hydroxides. Pyrochemical slag and ash from coal are therefore primarily enriched in Si, Al, Ca, Fe, and S. From a processing standpoint, the behavior of slag and fly ash is largely a function of the complexity of the fuel's inorganic chemistry (including the original mode of occurrence of the various elements), and the observed oxygen fugacity. Pyrochemical environments vary from reducing to oxidizing as a result of proximity to the flame and operational mode (combustion versus gasification). Consequently, multivalent elements further contribute to the complexity of slag/ash behavior by essentially behaving as separately unique elements when in their various valence states. In coal, the two abundant, multivalent inorganic elements are Fe (0, + 2, and +3) and S (−2, 0, +2, +4, and +6). In petroleum there are four abundant, multivalent inorganic elements: Ni (0 or +2), Fe (0, +2, and +3), V (+2, +3, +4, and +5), and S (−2, 0, +2, +4, and +6). The larger number of abundant inorganic elements in petroleum than coal, as well as the broader range of associated valence states, leads to more diverse slag/ash species formed during petroleum combustion/gasification, and consequently less predictable slag/ash behavior. A phase characterization of slags produced by the gasification of petroleum coke (a petroleum refining byproduct) illustrates their increased complexity with respect to typical coal slags.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号