首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Solar cells with the structure ZnO:Al/i-ZnO/CdS/Cu(In,Ga)Se2/Mo/polyimide were examined using a range of techniques. The elemental composition of the Cu(InGa)Se2 (CIGS) layers, their crystalline structure and optical properties were studied. Photoluminescence (PL) spectra of the CIGS absorber layers were studied as functions of temperature (4.2-240 K) and excitation power density. The band gap energy Eg of the CIGS layers was determined by employing photoluminescence excitation (PLE) spectroscopy. The influence of sodium incorporation on the PL properties of CIGS was analysed. Correlations of the optical properties of the CIGS absorber layers and the photovoltaic parameters of the solar cells were revealed.  相似文献   

2.
Thin films of Cu(In,Ga)Se2 (CIGS) were deposited at temperatures below 450 °C on polyimide (PI) substrates coated with Mo in a roll-to-roll set up by a combination of co-evaporation and ion-beam techniques. Flexible solar cells ITO/i-ZnO/CdS/CIGS/Mo/PI with and without Na incorporation were then fabricated. The films and solar cells were examined by: X-ray fluorescence spectroscopy (XRF) and Auger electron spectroscopy (AES), to determine the elemental composition, as well as by X-ray diffraction for structure- and scanning electron microscopy (SEM) for morphology-analysis. Photoluminescence (PL) and PL-excitation (PLE) at temperatures from 4.2 to 78 K were also used to estimate the band-gap energy of CIGS, examine the electronic properties and defect nature. The aim of this study was to correlate the incorporation of Na with optical and structural parameters of the CIGS layers as well as with the solar cell performance.  相似文献   

3.
Room temperature time-resolved photoluminescence (TR-PL) measurements have been performed on Cu(In,Ga)Se2 (CIGS) thin films and solar cells to clarify the recombination process of the photo-generated minority carrier. Both films and solar cells exhibited PL decay curves composed of the dominant fast (0.7-2 ns) and weak slow (3-10 ns) exponential decay curves. PL lifetime of the cell is longer than that of the thin films, indicating the longer minority carrier lifetime for the hetero-structures than in thin films. The increase of PL lifetime is consistent with the enhancement of the PL intensity and the elimination of defect-related PL as a result of the solar cell formation. These results are discussed in terms of the recombination process of carriers in films and hetero-structures. The relationship between the PL lifetime of the CIGS solar cells and the cell conversion efficiency is described.  相似文献   

4.
In order to reduce the co-evaporation time of Cu(In,Ga)Se2 (CIGSe) thin film absorber, a sequential approach has been investigated. CIGSe layers have been grown using the three-step based CUPRO (Cu-Poor/Rich/Off) process at substrate temperature of 600 and 500 °C. The first step consists in the growth of Cu-poor ([Cu]/[In + Ga] = 0.9) precursor layers. This paper aims at investigating the impact of this layer deposition duration on the CIGSe and respective solar cell properties. It is observed that for the two substrate temperatures investigated, the morphological and structural properties of the CIGSe layers do not change with increasing precursor deposition speed, even when it is increased by ten. Furthermore, the respective device performance also appears not affected by this reduction of the precursor growth time; all cells demonstrate 15% efficiency. From this work, the duration of our standard deposition process could be decreased from 23 to 14 min without performance loss independently of the substrate temperature.  相似文献   

5.
The measurement of electron beam induced current profiles in junction configuration (JEBIC) is a settled method for several semiconductor devices. We discuss the JEBIC method in the light of the special conditions present in the case of thin film Cu(In,Ga)Se2 solar cells.Our previously published results indicate that the charge state of defects close to or at the Cu(In,Ga)Se2/CdS interface depends on the minority carrier distribution, which changes strongly during a scan of the cross section with an electron beam. The charge distribution influences the electrostatic potential and therewith the collection of minority carriers.Here, we present an evaluation method of JEBIC profiles that accounts for this effect. Monte Carlo simulations of the carrier generation help us to consider in detail the influence of surface recombination. We determine the diffusion length, space charge width, surface- and back contact recombination velocity of Cu(In(1-r),Gar)Se2 devices with different Ga-contents r from JEBIC line scans.  相似文献   

6.
(Zn,Mg)O films, fabricated by atomic layer deposition, ALD, are investigated as buffer layers in Cu(In,Ga)Se2-based thin film solar cells. Optimization of the buffer layer is performed in terms of thickness, deposition temperature and composition. High efficiency devices are obtained for deposition at 105-135 °C, whereas losses in open circuit voltage are observed at higher deposition temperatures. The optimal compositional region for (Zn,Mg)O buffer layers in this study is for Mg/(Zn + Mg) contents of about 0.1-0.2, giving band gap values of 3.5-3.7 eV. These devices appear insensitive to thickness variations between 80 and 600 nm. Efficiencies of up to 16.2% are obtained for completely Cd- and S-free devices with (Zn,Mg)O buffer layers deposited with 1000 cycles at 120 °C and having a band gap of 3.6 eV.  相似文献   

7.
Thin films of Cu(In,Ga)Se2 (CIGS) absorber layers for thin film solar cells have been manufactured on polyimide foil in a low temperature, ion beam assisted co-evaporation process.In the present work a set of CIGS thin films was produced with varying selenium ion energy. Solar cell devices have been manufactured from the films and characterized via admittance spectroscopy and capacitance-voltage profiling to determine the influence of the selenium ion energy on the electric parameters of the solar cells. It is shown that the impact of energetic selenium ions in the CIGS deposition process leads to a change in the activation energy and defect density and also in the spatial distribution of electrically active defects.For the interpretation of the results two defect models are taken into account.  相似文献   

8.
Coevaporated Cu(In,Ga)Se2 layers on Mo-coated soda-lime glass substrates were produced by a three-stage process using various Se overpressure conditions during the three stages. Cross-sections of these samples were analyzed by electron backscatter diffraction (EBSD) in a scanning electron microscope in order to reveal the microstructures in the Cu(In,Ga)Se2 layers. In addition, the preferential orientations of these Cu(In,Ga)Se2 layers were studied by plan-view EBSD measurements. It was found that Cu(In,Ga)Se2 exhibits a texture in 110 orientation for Se/(Cu + In + Ga) atomic flux ratios R which are sufficiently large (≥ 4). In one Cu(In,Ga)Se2 layer produced with approximately R = 4, a large density of (near) Σ3 (twin) boundaries were detected which are oriented preferentially perpendicular to the substrate. By comparison of the local textures of neighboring grains and the theoretically possible changes in orientation by twinning, it is possible to retrace how the twinning occurred.  相似文献   

9.
In based mixture Inx(OH,S)y buffer layers deposited by chemical bath deposition technique are a viable alternative to the traditional cadmium sulfide buffer layer in thin film solar cells. We report on the results of manipulating the absorber/buffer interface between the chalcopyrite Cu(In,Ga)Se2 (CIGS) absorber and CdS or ZnS buffer by addition of a thin In based mixture layer. It is shown that the presence of thin Inx(OH,S)y at the CIGS absorber/CdS or ZnS buffer interfaces greatly improve the solar cell performances. The performances of CIGS cells using dual buffer layers composed of Inx(OH,S)y/CdS or Inx(OH,S)y/ZnS increased by 22.4% and 51.6%, as compared to the single and standard CdS or ZnS buffered cells, respectively.  相似文献   

10.
The present contribution deals with the influence of the copper concentration in Cu(In,Ga)Se2 (CIGSe) on the solar cells based on CIGSe/(PVD)In2S3 and CIGSe/(CBD)CdS. We find that, depending on the buffer layer, the optimum open circuit voltage (Voc) is not reached for the same copper concentration. The values of Voc for the CIGSe/(CBD)CdS solar cells are higher when the copper content is very close to stoichiometry (25%), whereas, the Voc values for CIGSe/(PVD)In2S3 solar cells attain their maximum for lower copper contents. On the other hand, contrary to the case of the (CBD)CdS buffer, the Jsc is strongly hindered for the (PVD)In2S3 buffered cells when the copper content is lowered. The study has been made for different absorber gallium contents and the evolution is coherent with the presence of a cliff at the CIGSe/(PVD)In2S3 interface.  相似文献   

11.
Cu(In,Ga)Se2 absorber layers were implanted with 20 keV Cd ions in order to investigate the influence of changes in the near-interface doping profile. Modifications in this region are shown by AMPS-1D simulations to have substantial impact on solar cell properties. Ion implantation and subsequent thermal annealing steps were monitored by SIMS measurements to control the thermal diffusion of the dopant. Solar cells both with and without CdS buffer layer were made from the implanted absorbers and characterized by j-V and EQE measurements. These experimental results in conjunction with simulations of the quantum efficiency show that a well-defined type-inversion of the implanted layer can be achieved by low-energy ion implantation.  相似文献   

12.
One-step Cu-In-Ga electrodeposition on Mo substrate is carried out by potentiostatic method in acidic aqueous media. The applied potential, the pH and the nature of the electrolyte are determined to obtain adequate precursor composition. The electrodeposit is found highly dendritic, due to Cu diffusion-controlled deposition. Selenization at temperatures ranging from 450 to 600 °C leads to Cu(In,Ga)Se2 (CIGS) absorber. The influence of selenization temperature and duration on Ga distribution as well as on CIGS crystallinity is discussed. Although the precursor is dendritic, relatively compact absorbers can be obtained. The best solar cell, achieved on 0.1 cm2, shows 9.3% efficiency (Voc 456 mV; jsc 33 mA cm−2; FF 62%).  相似文献   

13.
Fluorescent photon down conversion for the improvement of the blue response of ZnO/CdS/Cu(In,Ga)Se2 heterojunction solar cells and modules is investigated. Fluorescent dyes of the series Lumogen® F are analyzed by optical transmission and reflection as well as by photoluminescence measurements. A spectral transfer matrix formalism is introduced that allows to predict the suitability of a luminescent dye as a down-converter for a given solar cell from its absorption/emission properties. We find that Lumogen® F Violet 570 and Lumogen® F Yellow 083 as well as a combination of both yields improvements for Cu(In,Ga)Se2 solar modules. Particularly, we find that the short circuit current density of a Cu(In,Ga)Se2 mini-module is improved by 1.5 mA cm− 2 when applying a varnish with a combination of Lumogen® F Violet and Yellow. About 0.5 mA cm− 2 of this improvement is due to a reduced overall reflectance and an improvement of 1 mA cm− 2 results from the frequency conversion by the dyes.  相似文献   

14.
Solar cell absorber films of Cu(In,Ga)S2 have been fabricated by multi-stage co-evaporation resulting in compositional ratios [Cu]/([In] + [Ga]) = 0.93-0.99 and [Ga]/([In] + [Ga]) = 0.15. Intentional doping is provided by sodium supplied from NaF precursor layers of different thicknesses. Phases, structure and morphology of the resulting films are investigated by X-ray diffraction (XRD) and scanning electron microscopy. The XRD patterns show CuIn5S8 thiospinel formation predominantly at the surface in order to accommodate decreasing Cu content. Correlated with the CuIn5S8 formation, a Ga-enrichment of the chalcopyrite phase is seen at the surface. Since no CuS layer is present on the as-deposited films, functioning solar cells with CdS buffer and ZnO window layers were fabricated without KCN etch. The open-circuit voltage of solar cells correlates with the copper content and with the amount of sodium supplied. The highest efficiency cell (open-circuit voltage 738 mV, short-circuit current 19.3 mA/cm2, fill factor 65%, efficiency 9.3%) is based on the absorber with the least Cu deficiency, [Cu]/([In] + [Ga]) = 0.99. The activation energy of the diode saturation current density of such a cell is extracted from temperature- and illumination-dependent current-voltage measurements. A value of 1.04 eV, less than the band gap, suggests the heterojunction interface as the dominant recombination zone, just as in cells based on Cu-rich grown Cu(In,Ga)S2.  相似文献   

15.
铜铟镓硒薄膜太阳能电池的发展现状以及应用前景   总被引:19,自引:1,他引:19  
庄大明  张弓 《真空》2004,41(2):1-7
首先介绍了铜铟镓硒薄膜太阳能电池结构、性能特点以及目前在研究和生产过程中电池的制备方法和工艺;着重阐述了工业发达国家以及相应大公司在铜铟镓硒薄膜太阳能电池方面最新进展以及发展趋势,特别介绍了一些太阳能电池的实验室样品和组件的最高光电转化效率.也对国内在此方面的研究做了简要介绍.文中最后探讨了我国发展铜铟镓硒太阳能电池的可行性和产业化前景.  相似文献   

16.
Sodium (Na) is an important doping element for Cu(In,Ga)Se2 (CIGS) solar cells. However, when using Na-free flexible substrates like steel foil or polyimide film, it is necessary to ensure an efficient supply of sodium to achieve high cell efficiencies. The common incorporation methods for Na on these Na-free substrates are either to deposit a Na-containing precursor layer (e.g. NaF) onto the molybdenum (Mo) back contact prior to CIGS growth or to coevaporate a Na compound during CIGS growth. Another way is to incorporate sodium after CIGS growth by a post-deposition treatment with NaF. In this work, we tested two alternative Na doping methods which are well suited for a production line due to their easy controllability. One approach is to dope the molybdenum target with Na. With Na-doped Mo layers (Mo:Na) as the back contact, we could achieve efficiencies of 13.1% both on titanium (Ti) and stainless Cr steel foil using a single-stage inline CIGS process. With a low-temperature single-stage CIGS process on polyimide (PI) we reached an efficiency of 11.2% using a Mo:Na back contact. Another doping method involves sol-gel-deposited silicon oxide layers which contain Na (SiOx:Na). We have successfully deposited these sol-gel layers onto stainless steel foil by a roll-to-roll (R2R) method with short annealing times as needed in production. With these SiOx:Na layers we could achieve efficiencies of 13.7% on stainless steel foil and 11.5% on mild steel sheet using a single-stage inline CIGS process.  相似文献   

17.
Sputtered InxSy layers deposited on borosilicate glass and Si at substrate temperatures ranging from about 60 °C to 340 °C were analyzed by means of X-ray diffraction, energy-dispersive X-ray spectrometry, and optical transmission and reflection measurements. With increasing substrate temperature, the InxSy layers exhibit increasing sulfur concentration and also increasing absorption-edge energies. InxSy layers on Cu(In,Ga)Se2(CIGS)/Mo/glass stacks were additionally studied by scanning and transmission electron microscopy. With increasing substrate temperature, Cu, Ga, and In interdiffusion between CIGS and InxSy becomes more enhanced. At 340 °C, CuIn5S8 forms instead of InxSy. The CuIn5S8 formation at elevated temperatures may be the reason for the very low efficiency of solar cells with indium sulfide buffers deposited at temperatures above about 250 °C by various techniques.  相似文献   

18.
A one-step route was developed to fabricate Cu(In,Ga)Se2 (CIGS) absorber layers by direct magnetron sputtering from a single quaternary target with the composition of CuIn0.75Ga0.25Se2. The effects of the substrate temperature, the working pressure and the sputtering power on the morphology and phase structure of the CIGS layers were studied using scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The microstructure properties of the layers, including the crystallinity, grain size, compactness and the surface evenness, were found to be strongly dependent on the deposition parameters. CIGS absorbers with compact microstructure and large grains of micrometer size were obtained at 400 °C and 160 W, showing a very strong (220)/(204) orientation preference when sputtered at a higher working pressure. Raman spectra indicated no precipitation of the Cu-Se binary phases, but revealed a slight difference in the Ga/(Ga + In) ratio of different layers. The overall composition of the as-sputtered CIGS film was confirmed to be in agreement with the target composition through energy dispersive X-ray spectroscopy study. In comparison with the conventional co-evaporation or post-selenization synthesis for CIGS, the one-step sputtering route is more simplified and economical, which shows great potential to reduce the production cost of CIGS-based solar cells.  相似文献   

19.
The method of electron beam induced currents in junction configuration (JEBIC) has been employed to investigate carrier collection in Cu(In,Ga)Se2 solar cells. A detailed analysis of JEBIC line-scans reveals unexpected carrier collection properties, which cannot be explained with common models. We ascribe this anomalous behavior to an electrostatic barrier effect at the Cu(In,Ga)Se2 / CdS interface. We suggest the existence of a thin defect-layer on the surface of the Cu(In,Ga)Se2 with high acceptor concentration and valence band edge that is energetically lower than that of the bulk. Using this model, we achieve a good agreement between experimental and simulated JEBIC line-scans. The influence of the barrier effect is considerably reduced by a metastable change of the interface properties induced by intensive electron irradiation of the interface. This effect is explained by a metastable decrease of the negative charge density in the defect-layer.  相似文献   

20.
Cu(In,Ga)Se2 (CIGS) solar cells on aluminum foils offer the advantage to be flexible, lightweight and, because of the low cost substrate, can be used for several applications, especially in buildings, where aluminum is already commonly used. There are reports of a-Si solar cells on Al foil, but to our knowledge development of CIGS solar cells on Al foils has not been reported. We have developed CIGS solar cells on coated Al-foil samples. When using Al as substrate, CIGS layers of suitable structural and opto-electronic properties should be grown at low (< 450 °C) deposition temperatures, because of the difference in the thermo-physical properties of layers and substrates. We have grown CIGS layers by evaporation of elemental Cu, In, Ga, and Se at different substrate temperatures and investigated the properties of these CIGS layers by different methods (SEM, SIMS, and EDX). The photovoltaic properties of small area solar cells were characterized with I-V and quantum efficiency measurements. An efficiency of 6.6% has been achieved. We have also observed that some Al from the foil dissolves during chemical bath deposition (CBD) of CdS. The presence of Al in the bath seems, in some cases, to be beneficial for the electrical properties of the CIGS solar cells. Thinner and more homogenous CdS layers are obtained. Elastic Recoil Detection Analysis (ERDA) and SIMS measurements have shown incorporation of Al in the CdS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号