首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thermal stability and ablation properties of silicone rubber filled with silica (SiO2), aluminum silicate ceramic fiber (ASF), and acicular wollastonite (AW) were studied in this article. The morphology, composition, and ablation properties of the composite were analyzed after oxyacetylene torch tests. There were three different ceramic layers found in the ablated composite. In the porous ceramic layer, the rubber was decomposed, producing trimers, tetramers, and SiO2. ASF and part of AW still remained and formed a dense layer. The SiO2/SiC filaments in the ceramic layer reduced the permeability of oxygen, improving the ablation properties of the composites. The resultant ceramic layer was the densest, which acted as effective oxygen and heat barriers, and the achieved line ablation rate of the silicone composite were optimum at the proportion of 20 phr/40 phr (ASF/AW). Thermogravimetric analysis (TGA) confirmed that thermal stability of the composites was enhanced by the incorporation of ASF and AW. The formation of the ceramic layer was considered to be responsible for the enhancement of thermal stability and ablation properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39700.  相似文献   

2.
Plastics have a weight advantage over metals but they lack their strength, stiffness, dimensional stability, and electrical conduction. Fiber reinforced plastics have been used to bridge this properties gap, specifically engineering thermoplastics including carbon fibers (CFs). These composites are light, strong and stiff, electrostatically dissipating, and relatively easy to process by injection molding. However, the high aspect ratio and rigidity of the CFs cause orientation and anisotropy, especially when injection molded, thus reducing dimensional stability on the final product and limiting its use in precision components. In this study, polymer composite formulations of polyether imide containing CFs and carbon nanotubes (CNTs) were compounded and injection‐molded following a design of experiments (DOE) methodology. The coefficient of thermal expansion (CTE) in the polymer flow direction and perpendicular to the flow direction was used to evaluate thermal expansion isotropy. The electrical resistivity, impact strength, and morphological structure were also investigated. It was found that the addition of CNT caused a significant reduction in the thermal expansion anisotropy of the parts without compromising the impact strength. Also, it was found that CNTs are significantly more efficient than CFs for reducing the electrical resistivity. The conclusions of this study can be used to fine‐tune polymer composites with high dimensional thermal stability, electrostatic dissipation, and good mechanical properties, suitable for high‐performance devices. POLYM. COMPOS. 34:1367–1374, 2013. © 2013 Society of Plastics Engineers  相似文献   

3.
Processible composites of emeraldine salt form of polyaniline (PANI) with polyacrylic acid (PAA) are synthesized and studied for their structural, electrical, mechanical, thermal, and electrochemical properties. The processible conducting composites of various weight percentage from 20 wt % to 90 wt % (of PANI) have been prepared by mixing the PANI and PAA under vigorous stirring and sonication conditions. Self‐standing films of electroactive homogeneous composites are obtained by solution casting method. A significant improvement in processibility, crystallinity, and thermal stability is observed in the composites; however, the electrical conductivity decreased remarkably as the percentage of PANI is decreased in the composites. The 60 wt % PANI‐PAA composite showed crystalline structural property with orthorhombic crystal system and cell parameters as a = 5.93Å, b = 7.57Å, and c = 10.11Å. The 60 wt % PANI‐PAA composite also showed better thermal stability and highest capacitance amongst all the composites and used as an active material for development of electrochemical capacitors (parallel plate assembly). The processible composites based electrochemical capacitors using 0.5 M NaClO4‐Acetonitril electrolyte showed super capacitance with ease in fabrication and cost effectiveness in comparison to other similar materials based capacitors. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
The ablative performance of aluminum silicate ceramic fiber (ASF) and calcium carbonate (CaCO3) filled silicone rubber composites prepared through a two‐roll mill was examined. The properties of the composites were investigated by thermogravimetry, thermal conductivity measurements, and oxyacetylene torch testing. After the material was burnt, the structure and composition of the char were analyzed by Fourier transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy (SEM). The results of the ablation test showed that the ablation resistance improved greatly in an appropriate filler scope. Combined with SEM, it was proven that a firm, dense, and thermal insulation layer, which formed on the composites surface during the oxyacetylene torch test, was a critical factor in determining the ablation properties. Thermogravimetric analysis revealed that the thermal stability of the composites was enhanced by the incorporation of ASF and CaCO3. The thermal conductivity measurements showed that the silicone rubber composites had a very low thermal conductivity ranging from 0.206 to 0.442 W m?1 K?1; this significantly prevented heat from transferring into the inner matrix at the beginning of the burning process. The proportion of 20/40 phr (ASF/CaCO3) was optimum for improving the ablation resistance of the silicone rubber composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41619.  相似文献   

5.
Hybrid fillers of silicon nitride/carbon fibres (Si3N4/CFs) are performed to improve the thermal conductivities, mechanical and thermal resistance properties of the bismaleimide (BMI) composites. The thermally conductive coefficient of the Si3N4/CFs/BMI composites is improved to 1.68 W/mK with 50 wt% modified Si3N4 fillers. The flexural strength and interlaminar shear strength of the composites are optimal with 10 wt% modified Si3N4 fillers. The thermal resistance properties of the Si3N4/CFs/BMI composites are also improved with the addition of Si3N4 fillers. Surface modification of Si3N4 fillers exhibits positive effects on the thermal conductivities and mechanical properties of the Si3N4/CFs/BMI composites. POLYM. COMPOS., 37:468–471, 2016. © 2014 Society of Plastics Engineers  相似文献   

6.
In this article, ammonium polyphosphate (APP) and ammonium pentaborate (APB) were introduced to liquid silicone rubber with an aim of building rich-porous char structure in situ, thereby improving thermal insulation properties. Thermogravimetric analyses indicated that the incorporation of APP greatly increased the char residue of the composites. Oxy-acetylene torch tests showed that the addition of either APP or APB powders effectively enhanced the ablation resistance of the composites, whereas Shore A hardness tests revealed that the APP-containing composites exhibited a higher hardness than APB-filled counterparts. The linear ablation rates of composites with 40 phr APP or APB were reduced by 34.16% and 36.19%, respectively, when compared with the control sample. The maximum back-face temperatures of composites with 40 phr APP or APB was reduced to as low as 73°C. The APP-containing composites exhibited superior ablation resistance, considering both the linear ablation rate and the mechanical properties of char layer. In addition to SiO2, SiC, and C, B2O3 was produced in the APB composites, as characterized by XRD and Raman analysis. Combined with SEM, it was proven that the formation of a firm, continuous, rich-porous and thermal insulation char layer was advantageous to improve the ablation and insulation properties.  相似文献   

7.
Biodegradable polyhydroxyalkanoate (PHA) based polymer nanocomposite filled with nanoscale carbon fibers (CFs) were prepared by electrospinning. To enhance the processability and thermal properties of the composites, the carbon fibers were treated with chemical reagents, namely n-octanol, silane coupling agent (KH-550), and nitric acid (HNO3). The SEM result shows that the composite fibers with nitric acid treated CFs have the finest diameters and many uniform thickness distributions. All surface treatments on carbon fibers have increased the glass transition temperatures and crystallinities of the composites, with nitric acid treatment being the best. The improvements further depended on the volume fraction of the carbon fibers.  相似文献   

8.
This study examined the effects of the incorporation of carbon fiber (CF) and silicon carbide powder (SCP) into a high temperature vulcanized (HTV) silicone rubber, poly(dimethylsiloxane) (PDMS) containing vinyl groups on the ablation properties using an oxy‐acetylene torch test. The ablation test results showed that CF enhanced the hardness of the char formed on the composite surface during the oxy‐acetylene torch test and was an important factor determining the ablation properties. SCP was also beneficial in enhancing the surface char hardness of the HTV/CF composite. A new method was devised to evaluate the ablation properties more objectively by measuring the time elapsed for a rectangular‐shaped silicone rubber composite with specimens loaded with a constant weight to burn and fail off during the oxy‐acetylene torch test. The mechanical properties of the silicone rubber composites were also examined as a function of the additive content using a universal test machine (UTM). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Thermal stability and ablation properties of silicone rubber composites   总被引:1,自引:0,他引:1  
Effects of incorporation of clay and carbon fiber (CF) into a high temperature vulcanized (HTV) silicone rubber, i.e., poly(dimethylsiloxane) (PDMS) containing vinyl groups, on its thermal stability and ablation properties were explored through thermogravimetric analyses (TGA) and oxy‐acetylene torch tests. Natural clay, sodium montmorillonite (MMT), was modified with a silane compound bearing tetra sulfide (TS) groups to prepare MMTS4: the TS groups may react with the vinyl groups of HTV and enhance the interfacial interaction between the clay and HTV. MMTS4 layers were better dispersed than MMT layers in the respective composites with exfoliated/intercalated coexisting morphology. According to TGA results and to the insulation index, the HTV/MMTS4 composite was more thermally stable than HTV/MMT. However, addition of CF to the composites lowered their thermal stability, because of the high thermal conductivity of CF. The time elapsed for the composite specimen, loaded with a constant weight, to break off after the oxy‐acetylene flame bursts onto the surface of the specimen was employed as an index for an integrated assessment of the ablation properties, simultaneously taking into consideration the mechanical strength of the char and the rate of decomposition. The elapsed time increased in the order of: HTV < HTV/CF ≈ HTV/MMTS4 < HTV/CF/MMTS4 ≈ HTV/MMT < HTV/CF/MMT. This order was different from the increasing order of the thermal stability determined by TGA results and the insulation index. The decreased degree of crosslinking of the composites with MMTS4 compared with that of the composite with MMT may be unfavorable for the formation of a mechanically strong char and could lead to early rupture of the HTV/MMTS4 specimen. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The effect of Borax on the mechanical and ablation properties of three different ethylene‐propylene‐diene terpolymer (EPDM) compounds containing 20 phr carbon fiber, 20 phr Kevlar or 10 phr/ 10 phr carbon fiber/ Kevlar was investigated. All formulations contained 30 phr fumed silica powder and 10 phr paraffinic oil. It was found that adding Borax to the composite samples containing carbon fiber or Kevlar fiber or their mixture with an equal ratio can increase the tensile strength, elastic modulus and hardness with a slightly decrease in the elongation at break of the rubber samples. The results of thermogravimetry analysis (TGA) on the various samples showed significant increase in the char yield at 670°C by adding Borax to the rubber compounds. Moreover, ablation resistance of samples was also improved by increasing Borax content. Meanwhile, density and thermal conductivity of the insulator were also reduced up to about 10% when the carbon fiber was replaced with the Borax. The results indicated that composites containing Kevlar have high storage modulus and produce compact and stable char. EPDM rubber composite containing Borax (20 phr), carbon fiber (10 phr), and Kevlar (10 phr) showed thermal and ablative properties comparable with those of the asbestos‐ filled EPDM. The thermal conductivity and ablation rate of the above‐ mentioned sample were 0.287 W/m/K and 0.13 mm/s respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41936.  相似文献   

11.
The increased utilization of reinforced polymeric blend composite materials has prompted renewed interest in mathematical models which can explain or predict the characteristics of processing and the properties of composite materials in terms of the properties and concentration of the components. As a first step toward developing the rules for multicomponent systems we restrict our attention to the Lee-Nielsen's model and concepts of two-component systems with particulate inclusions embedded in a continuous matrix. The following property-mixing relationships are then discussed: (1) reinforcement of uncured and cured rubber composites; (2) thermal expansion of polymer composites; (3) elastic modulus, and thermal conductivity of (reinforced) polymeric foam materials; and (4) heat buildup of rubber composites. Some important concepts and principles which have evolved from our experimental attempts at correlating the behavior of heterogeneous multiphase polymer materials are also discussed.  相似文献   

12.
High temperature processing thermoplastic polymers, polyetheretherketone (PEEK) and polyethersulphone (PES), were melt blended with carbon fibers (CFs) to make composites. These composites were investigated for their mechanical, thermal, and electrical properties. Mechanical properties that are expressed in terms of storage modulus, loss, and damping were enhanced with the addition of CFs. Thermal properties were determined by DSC and TGA. These methods help to understand the effects of fiber content and fiber–matrix adhesion in the composites. Composites were also tested for their electrical and thermal conductivity because CFs leave the composites thermally and electrically conductive. CFs enhanced the crystallinity of the PEEK appreciably that in turn influenced thermal conductivity, electrical resistivity, and the stiffness of PEEK/CF (composites of PEEK with CFs). PES/CF (composites of PES with CF) shows a different behavior due to the amorphous nature of PES. The work involves one filler and two different matrices, and so it provides an interesting comparison of how matrix morphology can influence the properties of composites. POLYM. COMPOS. 28:785–796, 2007. © 2007 Society of Plastics Engineers.  相似文献   

13.
Abstract

Rubber ferrite composites have the unique advantage of mouldability, which is not easily obtainable using ceramic magnetic materials. The incorporation of mixed ferrites in appropriate weight ratios into the rubber matrix not only modifies the dielectric properties of the composite but also imparts magnetic properties to it. Mixed ferrites belonging to the series of Mn(1 -x)Znx Fe2 O4 have been synthesised with different values of x in steps of 0·2, using conventional ceramic processing techniques. Rubber ferrite composites were prepared by the incorporation of these pre-characterised polycrystalline Mn(1 -x)ZnxFe2 O4 ceramics into a natural rubber matrix at different loadings according to a specific recipe. The processability of these elastomers was determined by investigating their cure characteristics. The magnetic properties of the ceramic fillers as well as of the rubber ferrite composites were evaluated and the results were correlated. Studies of the magnetic properties of these rubber ferrite composites indicate that the magnetisation increases with loading of the filler without changing the coercive field. The hardness of these composites shows a steady increase with the loading of the magnetic fillers. The evaluation of hardness and magnetic characteristics indicates that composites with optimum magnetisation and almost minimum stiffness can be achieved with a maximum loading of 120 phr of the filler at x=0 4. From the data on the magnetisation of the composites, a simple relationship connecting the magnetisation of the rubber ferrite composite and the filler was formulated. This can be used to synthesise rubber ferrite composites with predetermined magnetic properties.  相似文献   

14.
Hollow glass microbead/silicone rubber composite coatings were prepared to improve the heat-resistance and mechanical properties of silicone rubber-based composites, using CE modified SR as the matrix and HGM as the filler. The microscopic morphology and thermal stability of the composites were characterized by scanning electron microscopy (SEM) and thermogravimetric analyzer (TGA), respectively. The results showed that the thermal stability of the composites increases with the increase of filler content. For the composite sample with a HGM mass content of 16.7%, the initial decomposition temperature (T5) is 408°C, which is 84°C higher than that of silicone rubber. The low density and high sphericity of HGM make it easier to uniformly disperse in the polymer matrix. In addition, compared to silica, which is commonly used as an inorganic filler, the lower thermal conductivity of HGM is also beneficial for achieving better thermal shielding effect. It is confirmed that the insufficient thermal stability of the polymer matrix above 400°C can be compensated for by the properly dispersed inorganic fillers. Therefore, the thermal stability of the composite is improved by the synergistic effect of modified heat-resistant matrix and inorganic filler.  相似文献   

15.
To enhance the thermo-electrical properties of liquid silicone rubber (LSR) in applications, the carbon fibres (CFs) modified by multiwall carbon nanotubes (MWCNT) on the surfaces were used as the fillers. The MWCNT-modified CFs (MPCFs) were analysed by Fourier transform infrared spectra, thermogravimetric analysis, scanning electron micrograph and energy dispersive X-ray spectroscopy. It was found that MWCNT were successfully adsorbed onto the surface of CFs. The MPCFs functioned as conductive fillers in LSR for thermal and electrical conductivity application and exhibited significant enhancement. The effects of MPCFs loading on thermal conductivity and volume resistivity of LSR composites were investigated in detail. Results of this work revealed that the MPCFs/LSR composites possessed a thermal conductivity of 0.73?W?m?1?K?1 with 14?vol.-% filler loading, approximately 3.48-fold higher than that of pure LSR substrate. And with the increase of MPCFs loading, the least volume resistivity of MPCFs/LSR composites is 10?Ω?cm. Besides, compared with that of neat LSR, the tensile strength of MPCFs/LSR composites increased 0.913?MPa.  相似文献   

16.
《Ceramics International》2023,49(6):9130-9137
A SiC-nanowire-modified SiC–Si (SiCnw@SiC–Si) coating was prepared for carbon-fibre-reinforced carbon-matrix (C/C) composites using a two-step method based on thermal evaporation and gaseous silicon infiltration, and the effects of SiC nanowires on the oxidation and ablation behaviours of the coated samples were studied. Oxidation tests conducted at 1500 °C revealed that the weight loss of the SiC–Si-coated C/C composite was 15.85% after 6 h, whereas the SiCnw@SiC–Si-coated C/C composite experienced a significantly lower weight loss of 1.27% after 50 h. Ablation tests suggested that the mass and linear ablation rates of the SiCnw@SiC–Si-coated C/C composite were 0.05 mg/s and 0.09 μm/s, respectively; they were reduced by 78.26 and 92.74%, respectively, compared with those of the SiC–Si-coated C/C composite. Careful characterisation suggested that the network structure of the SiC nanowires in the SiC–Si phase can suppress crack propagation and firmly attach to the coating surface to enhance the interfacial adhesion between the coating and substrate, leading to improved anti-oxidation and anti-ablation properties. The SiCnw@SiC–Si coating could offer a technological foundation for preventing the oxidation and ablation of C/C composites in aerospace engineering.  相似文献   

17.
As self‐lubricating bearing liner materials, tribological properties of milled pitch‐based carbon fibers (CFs) modified polytetrafluoroethylene (PTFE)/Kevlar fabric composites were investigated, and the microscopic morphology of worn surface was studied. The results show that the appropriate incorporation of CFs can obviously reduce the wear rate of the fabric composite with almost unchanging friction coefficient. The wear rates of 5 wt % CF‐filled PTFE/Kevlar fabric composites are decreased by 30% and 48% for two kinds of composites made with fibers from different producers compared with unfilled fabric composites. Scanning electron microscopy observations show that the appropriate incorporation of CFs obviously improves the interfacial bonding and reduces pull‐out and fracture of Kevlar fiber. Meanwhile, the introduction of CFs at proper fraction is helpful to form smooth and continuous transfer film on the surface of metal counterpart. The improving mechanism of the CF is attributed to increasing mechanical strength, thermal conductivity and self‐lubricating effects. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46269.  相似文献   

18.
Biomorphic SiC composites were fabricated by infiltration of liquid Si into a preform fabricated from medium-density fiberboard (MDF). The phase compositions, microstructures, oxidation behaviors, and ablation properties of the composites were investigated. The composites were oxidized at elevated temperatures (up to 1450 °C) in air to study their oxidation behavior. Pores and cracks initially formed from the oxidation of residual carbon, followed by melting of residual Si. The ablation resistance of a composite was gauged using an oxy-acetylene torch. The formation of a SiO2 layer by the oxy-acetylene flame improved the ablation resistance because molten SiO2 spread over the ablated surface and partially sealed the pores, thus acting as an effective barrier against the inward diffusion of oxygen.  相似文献   

19.
聚丙烯酸酯改性石墨及其对天然橡胶导热性能的影响   总被引:1,自引:0,他引:1  
采用聚丙烯酸酯改性石墨,然后将其填充到天然橡胶中,研究了改性石墨对复合材料导热性能和力学性能的影响。结果表明,石墨经聚丙烯酸酯改性后降低了自身的聚集作用,同时由于其被包覆,受力时更不易分层滑移;表面粗糙度的提高及有机基团的增多使得石墨与橡胶间的结合作用增强,同时促成了更多导热网链和"桥接"导热通道的形成,从而提高了其填充天然橡胶的热导率和力学性能。石墨在改性时软硬段单体的配比影响其包覆效果,进而影响其填充天然橡胶的导热和力学性能;当石墨与改性单体的质量比为10/1、软硬段单体的质量比接近1/1时,所改性石墨填充天然橡胶的热导率较高,综合力学性能较好。  相似文献   

20.
Different chemically modified (including treatments with alkali alone and a combination of alkali and silane coupling agent) corn fibers (CFs) have been used as reinforcements in polylactic acid (PLA) matrix to improve the mechanical and thermal properties of the CF/PLA composites. A comparative study has been made to find out how the two treatments affect the mechanical and thermal properties such as tensile, flexural, and impact strengths and glass transition temperature (Tg), crystallinity, and heat deflection temperature (HDT) of the CF/PLA composites. Scanning electron microscopy analyses have been conducted to evaluate the fiber–matrix adhesion. It has been observed that the treatment with a combination of alkali and silane is more efficient in strengthening fiber–matrix bonding, and thus more significantly improving the tensile and flexural strengths, crystallinity, Tg, and HDT of the CF/PLA composites than the treatment with alkali alone. However, alkali treatment produces the optimal impact strength. Mechanisms have been proposed to interpret the observed changes in mechanical and thermal properties as a result of fiber treatments. It is inferred that the surface treatment of CFs with a combination of alkali and silane may also be applied in other CF–polymer composite systems. POLYM. COMPOS., 37:3499–3507, 2016. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号