首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Si3N4/SiC composite was hot-pressed. Using this material, fatigue tests on crack-healed and proof-tested specimens were conducted at 1000–1400 °C. A surface elliptical-crack of about 110 μm in diameter was introduced on the specimens using a Vickers hardness indenter. The crack-healing was performed at 1300 °C for 1 h in air, mainly. The fatigue limit of the crack-healed and proof-tested specimen (C.P specimen) decreased slightly with increasing test temperature. However, the crack-healed specimen is not sensitive to low-cycle fatigue up to 1400 °C, and the fatigue limit is almost equal to the minimum bending strength at each temperature. To investigate the reason, the crack-healing behavior under cyclic stress was carried out systematically at 1200 °C in air. A 110 μm surface crack could be healed perfectly at 1200 °C in air under cyclic stress with a frequency of 0.001–5 Hz. From this, it can be concluded that [crack-healing+proof test] and crack-healing during service are useful techniques for maintaining structural integrity of these ceramic components.  相似文献   

2.
Si3N4/SiC composite ceramics were sintered and subjected to three-point bending. A semi-elliptical surface crack of 100 μm surface length was made on each specimen. The crack-healing behavior under cyclic stress of 5 Hz, and resultant cyclic fatigue strengths at healing temperatures of 1100° and 1200°C, were systematically investigated. The main conclusions are as follows: (1) Si3N4/SiC composite ceramics have an excellent ability to heal a crack at 1100° and 1200°C. (2) This sample could heal a crack even under cyclic stress at a frequency of 5 Hz. (3) The crack-healed sample exhibited quite high cyclic fatigue strength at each crack-healing temperature, 1100° and 1200°C.  相似文献   

3.
The influence of fatigue loading history and microstructural damage on the magnitude of frictional heating and interfacial shear stress in a unidirectional SiC fiber/calcium aluminosilicate matrix composite was investigated. The extent of frictional heating was found to depend upon loading frequency, stress range, and average matrix crack spacing. The temperature rise attained during fatigue can be significant. For example, the temperature rise exceeded 100 K during fatigue at 75 Hz between stress limits of 220 and 10 MPa. Analysis of the frictional heating data indicates that the interfacial shear stress undergoes an initially rapid decrease during the initial stages of fatigue loading: from an initial value over 20 MPa, to approximately 5 MPa after 25 000 cycles. Over the range of 5 to 25 Hz, the interfacial shear stress was not significantly influenced by loading frequency. The implications of frictional heating in fiber-reinforced ceramics are also discussed.  相似文献   

4.
Adhesive joints are normally subjected to different working conditions in their service life. This may involve both static and cyclic loadings. In many instances, a combination of various loading conditions occurs that can be further provoked by exposure to hostile environments. This, in turn, leads to the need to characterize the joint behavior under different combinations of working conditions. Extensive experimental tests are needed in order to evaluate the joint performance under such variable working conditions. This implies the development of low cost and efficient test technique, the one that is simple and reduces the operator time as well. With this objective in mind, a novel technique in mechanical evaluation of adhesive joints was developed in the present work. Alternative monotonic and variable-amplitude cyclic loads were applied on the same double cantilever beam (DCB) specimens under cleavage mode. DCB specimens were made from aluminum bars joined together by a two-part toughened structural adhesive. On one face, a series of crack detection sensors were bonded to control the test machine for switching between monotonic and cyclic loadings. The test machine had two aligned hydraulic actuators which applied bending forces on the upper and lower arms of the DCB specimen. The effects of test frequency and applied load history were also investigated within a range of 4–20 Hz for a nominal adhesive thickness of 0.5 mm. The fatigue performance of each configuration was represented by a power-law relationship and was compared for different test conditions. The test results revealed that the fatigue damage occurred at relatively lower load levels (35%) when compared with monotonic fracture load. The power-law constants for the tested adhesive were influenced by test frequency but were not sensitive to loading order.  相似文献   

5.
The fatigue failure of thermoplastics and glass-reinforced thermoplastics is a function of cyclic stress or deflection level, test frequency, viscoelastic polymer parameters and matrix-to-fiber stress transfer. This paper reports an investigation of the modes of high frequency fatigue failure in glass-reinforced and unreinforced thermoplastics. In particular the effects and control of dissipative heating of a working specimen and the role of efficient matrix-to-fiber stress transfer are considered. A test procedure with which the severity of dissipative heating can be continuously followed and controlled during an accelerated fatigue test is described.  相似文献   

6.
The fatigue behavior of a conditioned short glass‐fiber reinforced polyamide 6 was studied and the effect of the cyclic frequency investigated. Load controlled fatigue tests were performed, and the strains and surface temperature of specimens were recorded continuously. The number of cycles to failure was found to be dependent upon cyclic creep rate, as is typical for short glass fiber reinforced polyamides in the conditioned state. A strong reduction of fatigue strength was observed for increasing cyclic load frequency. This was mainly related to the specimen temperature increase due to hysteretic self heating and its effect on the cyclic creep speed. A frequency superposition method is proposed, expressing the relationship between temperature rise, applied stress, and cyclic creep speed in terms of a parameter derived from the Larson–Miller steady creep parameter. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

7.
A mullite/SiC whisker/SiC particle multi-composite, having excellent crack-healing ability and mechanical properties, was hot pressed in order to investigate the crack-healing behavior under stress and the resultant fatigue strength at the temperature of healing. A semi-elliptical surface crack 100 μm in surface length was introduced on each specimen. The pre-cracked specimens were crack healed under cyclic or constant stress by using a three-point bending stress at 1473 K, and the resultant bending strength and cyclic fatigue strength were measured at 1473 K. The pre-crack on the surface of the specimens could be healed even under stress. The threshold stresses for crack healing, as determined by evaluating the strengths of crack-healed specimens at a healing temperature of 1473 K, were 170 MPa for both constant and cyclic stresses, corresponding to 77% of the bending strength of the pre-cracked specimens. The static and cyclic fatigue behaviors of crack-healed specimens were also investigated at a healing temperature of 1473 K.  相似文献   

8.
One is faced with an interesting challenge when trying to explain the effect of test frequency on polymer fatigue performance. While hysteretic heating arguments appear sufficient to explain a diminution of fatigue resistance with increasing cyclic frequency in unnotched test samples, the enhancement of fatigue resistance in many polymers with increasing cyclic frequency in notched samples is still not clearly understood. In large measure, this is due to contradictory trends in fre-quency-sensitive material properties which affect the fatigue process. In this paper, a number of proposed fatigue models dealing with the time and strain rate dependence of elastic modulus, yield strength, creep and localized crack tip heating are examined and confronted with available data from the literature. Additional fatigue crack propagation data for poly(methyl methacrylate), poly (vinyl chloride), polystyrene, poly-carbonate, nylon 66, poly(vinylidene fluoride) and poly(2,6-dimethylphenylene oxide) were obtained and are reported herein. These data were obtained over a maximum frequency range of 0.1 to 100 Hz and, for selected polymers, with various waveforms. Frequency sensitivity is shown to be greatest in those polymers that show a high tendency for crazing. Relative fatigue behavior is found to reflect a competition between strain rate and creep effects. Where creep effects dominate, the total crack growth rate may be viewed as consisting of the summation of pure fatigue and creep components, respectively. Finally, the β transition appears to have a role, with frequency sensitivity being at a maximum for polymers where the β transition at room temperature occurs in the range of the experimental test frequency.  相似文献   

9.
In this study, the fatigue behavior of polyamide 66 reinforced with short glass fibers and especially the role of glass fibers has been investigated under two kinds of cyclic loading. tension–tension fatigue tests with stress controlled and alternative flexural fatigue test with strain controlled were carried out. The main topics include microscope damage observation, described by fiber/matrix debonding and interfacial failure, endurance limit with Wohler curves, effect of self‐heating temperature. For both tests, the surface temperature increases with an increasing applied load. The results show that the self‐heating has an important effect in the failure point where the Wohler curves join each other. The fracture surface was analyzed by scanning electron microscope for both applied loads. The stress ratio is −1 for alternative flexural fatigue test and 0.1 and 0.3 for tension–tension fatigue test ones at frequencies ranging 2–60 Hz. POLYM. COMPOS.,, 2012. © 2012 Society of Plastics Engineers  相似文献   

10.
As an engineering thermoplastic acetal homopolymer is often used in the manufacture of parts subjected to fatigue. This article presents the results of flexural fatigue tests on acetal Delrin 550 under different environmental conditions, namely ambient air, forced-air ventilation at ambient temperature, or oil kept at a constant temperature at 40°C. The fatigue tests were performed on specimens cut from extruded sheets at a constant frequency of 30 Hz. Surface temperatures of the test specimens were measured either optically or electrically, depending on the environment. The test results show that both acetal stress and surface temperature of specimen, which are somehow related, vary considerably from one type of environment to another. However, results show that the fatigue life of the specimen is mainly governed by the amplitude of the initial stress and is almost independent of the environment, Another subject examined was the effect of oil on acetal's mechanical properties. It was found that prolonged contact with oil produced slight variations in tensile properties, but no significant effect on fatigue, life.  相似文献   

11.
The glass transition temperature (Tg) of epoxy thermosets is a critical material property that depends on the component chemistry, the final cross-link density, and processing conditions. This study incorporates dynamic mechanical analysis (DMA) testing with a torsion clamp geometry on a TA Instruments DHR-2 and differential scanning calorimetry (DSC) to characterize five different two-component epoxy-amine systems. Investigation of the Tg dependence on DMA frequency and heating shows that lowering the frequency from 1 to 0.01 Hz results in a Tg very similar to that measured using DSC, while a heating rate of 0.3°C/min using DMA gives a Tg comparable to the DSC measured value at 30°C/min. The DMA technique reveals secondary relaxation transitions and peak broadening in the tan(δ) plots of poorly mixed epoxy blends, quantified using full width at half maximum (FWHM) of tan(δ) peaks, and are indicative of a non-homogeneous cross-linked network and off-ratio blending, respectively. The increase in the FWHM due to poor mixing ranges from 8% to 96%. These parameters are easily measurable and quantifiable in DMA, but are not observed in DSC. The additional DMA insights are valuable for process development and failure analysis, and can improve the understanding of epoxies.  相似文献   

12.
An experimental study was conducted to evaluate the effect of frequency and self‐heating on fatigue behavior of two unreinforced and two short glass fiber reinforced thermoplastic polymers. Load‐controlled fatigue tests were conducted under fully reversed (R = ?1) and R = 0.1 conditions with specimens loaded in either longitudinal or transverse direction to the mold flow direction. Effect of frequency on fatigue life was evaluated at 23 and 125°C and for a range of frequencies between 0.063 and 20 Hz. Incremental step frequency tests were also performed at different stress ratios and stress levels. Surface temperature rise was found to be material, frequency, and stress level dependent. Three energy‐based models were applied to the incremental step frequency data and relationships were developed for each material to estimate surface temperature rise as a function of test frequency and stress level. Relationships were also developed to assess critical frequency for the unreinforced thermoplastics at a given stress level above which surface temperature does not stabilize. POLYM. COMPOS., 55:2355–2367, 2015. © 2015 Society of Plastics Engineers  相似文献   

13.
Al2O3 reinforced by SiC whiskers (Al2O3/SiC-W) was hot-pressed to investigate the fatigue strength of crack-healed specimens at high temperature. Semielliptical surface cracks of 100 μm surface length were introduced on each specimen surface. These specimens were crack-healed at 1300°C for 1 h in air, and static and cyclic fatigue strengths were systematically investigated at room temperature, 900° and 1100°C by three-point bending. The static and cyclic fatigue limits of the crack-healed specimens were more than 70% of the average bending strength at each testing temperature. Crack-healed specimens of Al2O3/SiC-W were not sensitive to static and cyclic fatigue at room temperature and high temperatures. Therefore, the combination of crack-healing and whisker reinforcement can play an important role in increasing static and cyclic fatigue strengths at high temperature.  相似文献   

14.
Conductive adhesives are used in electronics packaging applications for hybrid, die-attach and display assemblies. There are a number of issues of concern in the design of joints bonded using electronically-conductive adhesives (ECAs). An important issue is the cyclic fatigue behavior of conductive adhesive joints under elevated humidity environments, in which failures may occur due to cyclic mechanical and/or thermal stresses. This paper addresses the effect of elevated humidity levels on the fatigue and failure behaviors of ECAs. For this purpose, joints were prepared using stainless-steel adherend specimens and a commercial ECA, and tested under monotonic and cyclic fatigue conditions, at two humidity levels, namely 20% and 90% relative humidity at 28°C. Furthermore, joint failure mechanisms were analyzed using optical techniques, and joint conductivity measurements. Load versus number of cycles (PN) curves were generated using these specimens at three different load ratios (R), namely 0.1, 0.5 and 0.9, at a cyclic frequency of 150 Hz. The PN curves were parallel and the failure modes were found to be predominantly interfacial, accompanied by a significant decrease in joint conductivity.  相似文献   

15.
This article presents the experimental results of stress‐controlled fatigue tests of an injection‐molded 33 wt% short E‐glass fiber‐reinforced polyamide 6,6. The effects of specimen orientation with respect to the flow direction, hole stress concentration, and weld line on the fatigue life have been considered. In addition, the effect of cyclic frequency has been examined. In addition to the modulus and tensile strength, the fatigue strength of the material was significantly higher in the flow direction than normal to the flow direction, indicating inherent anisotropy of the material caused by flow‐induced orientation of fibers. The presence of weld line reduced the modulus, tensile strength, failure strain, and fatigue strength. The fatigue strength of specimens with a hole was lower than that of un‐notched specimens, but was insensitive to the hole diameter. At cyclic frequencies ≤ 2 Hz, failure was due to fatigue, and fatigue life increased with frequency. However, at cyclic frequencies > 2 Hz, the failure mode was a mixture of fatigue and thermal failures, and fatigue life decreased with increasing frequency. POLYM. COMPOS., 27:230–237, 2006. © 2006 Society of Plastics Engineers.  相似文献   

16.
Polyamide 66/hectorite nanocomposites exhibit superior mechanical properties compared with pure polymers and are promising for structural applications. X‐ray diffraction results revealed reduced degree of exfoliation with increase in organoclay content. Flexural fatigue characteristics of polyamide 66/hectorite nanocomposites containing different quantities of clay content were investigated, under deflection control mode, using a custom built flexural fatigue test rig. Addition of organoclay improved the moduli of the material. An enhanced resistance to cyclic softening was noticed at high temperatures with the incorporation of organoclay. Nanocomposite samples exhibited a significant improvement in fatigue life compared with pure polymers; however, the degree of enhancement is governed by the nanostructure of organoclay in polymer matrix. The fatigue life of nanocomposite samples is strongly affected by specimen temperature and induced stress. Macroscopic fracture surfaces changed from flat featureless structure to a highly perturbed structure with increase in organoclay content. POLYM. COMPOS., 31:1977–1986, 2010. © 2010 Society of Plastics Engineers.  相似文献   

17.
The influence of cyclic loading frequency on the tensile fatigue life of a woven-carbon-fiber/SiC-matrix composite was examined at room temperature. Tension-tension fatigue experiments were conducted under load control, at sinusoidal frequencies of 1, 10, and 50 Hz. Using a stress ratio (σminmax) of 0.1, specimens were subjected to maximum fatigue stresses of 310 to 405 MPa. There were two key findings: (1) the fatigue life and extent of modulus decay were influenced by loading frequency and (2) the postfatigue monotonic tensile strength increased after fatigue loading. For loading frequencies of 1 and 10 Hz, the fatigue limit (defined at 1 × 106 cycles) was approximately 335 MPa, which is over 80% of the initial monotonic strength of the composite; at 50 Hz, the fatigue limit was below 310 MPa. During 1- and 10-Hz fatigue at a maximum stress of 335 MPa, the modulus exhibited an initially rapid decrease, followed by a partial recovery; at 50 Hz, and the same stress limits, the modulus continually decayed. The residual strength of the composite increased by approximately 20% after 1 × 106 fatigue cycles at 1 or 10 Hz under a peak stress of 335 MPa. The increase in strength is attributed in part to a decrease in the stress concentrations present near the crossover points of the 0° and 90° fiber bundles.  相似文献   

18.
The influence of loading frequency on the fatigue life and internal (frictional) heating of unidirectional SiC-fiber/ calcium aluminosilicate-matrix composites was investigated at room temperature. Specimens were subjected to tension–tension fatigue at sinusoidal loading frequencies from 25 to 350 Hz and maximum fatigue stresses of 180 to 240 MPa. The key findings of the study were that (1) fatigue life decreased sharply as the loading frequency was increased, (2) for all loading frequencies, fatigue failures occurred at stress levels that were significantly below the monotonic proportional limit stress of ∼285 MPa, and (3) pronounced internal heating occurred during fatigue, with the surface temperature of the fatigue specimens increasing by 160 K during 350-Hz fatigue at a peak stress of 240 MPa.  相似文献   

19.
An experimental investigation was conducted to evaluate fatigue behaviors of two thermoplastics. The effects considered include mold flow direction, thickness, mean stress, temperature, and frequency. Tension‐compression as well as tension?tension load‐controlled fatigue tests were performed at room temperature, ?40°C and 85°C. Incremental step cyclic deformation tests were also performed to generate cyclic stress?strain curves to determine strain‐life fatigue properties. The effect of mean stress was modeled using various parameters. The Walker mean stress model and a simple model with a mean stress sensitivity factor proved to be the most effective models to correlate the wide range of experimental data generated. POLYM. ENG. SCI., 54:725–738, 2014. © 2013 Society of Plastics Engineers  相似文献   

20.
The graphite‐filled polyurethane/poly(methyl methacrylate‐butyl methacrylate) (PU/P(MMA‐BMA)) semi‐interpenetrating polymer networks (IPNs) were synthesized by sequential method. The influences of graphite particle content and size on the 60/40 PU/P(MMA‐BMA) IPNs were studied. The damping properties of IPN composites were evaluated by dynamic mechanical thermal analysis (DMA) and cantilever beam resonance methods. The mechanical performances were investigated using tensile and hardness devices. DMA results revealed that the incorporation of graphite particles improved damping properties of IPNs significantly. The 5% graphite‐filled IPN composite exhibited the widest temperature range and the highest loss factor (tan δ) when the test frequency was 1 Hz. As to the damping properties covering a wide frequency range from 1 to 3,000 Hz, the addition of graphite particles broadened the damping frequency range (Δf, where tan δ is above 0.3) and increased the tan δ value of IPNs. Among them, the composite with 7.5% graphite showed the best damping capacity. And the hardness and the tensile strength of IPN composites were also improved significantly. POLYM. COMPOS., 2013 © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号