首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 752 毫秒
1.
This paper focuses on the contributions of diversities of strain rate and orientations for aggravating the diversities of micro failure behaviors on carbon fiber reinforced polymer (CFRP) laminates. A miniature horizontal type tensile tester is employed to conduct experiments with strain rate ranging from 2.6 × 10−6 s−1 to 2.6 × 10−3 s−1. The CFRP laminates are obtained based upon a thermoset toughened epoxy matrix (termed CF/Epoxy) with ply orientations of (0°/0°) and (0°/90°). Significant differences in deformation behaviors of CFRP laminates are determined through tests. The study clearly reveals the strain rate-dependent deformation modes of CFRP laminates, involving pure fiber fracture, epoxy crack with stepped surface and interface failure with residual voids, determines the “low-high-low” variation tendency of Young's modulus and strength as a function of strain rate. Ply orientation-dependent differences in deformation behaviors are also investigated via severe interfacial shearing effect. A unified model consisted of four deformation modes to is clarified to analyze the complexity of CFRP laminates failure mechanism.  相似文献   

2.
ABSTRACT

This study addresses the effects of testing temperature and speed on carbon woven fibre-reinforced polyamide 6 composites (CF/PA6) with or without polyurethane dispersion (PUD) surface treatment. Dynamic mechanical analysis (DMA) was employed to check visco-elastic properties of CF/PA6 laminates. CF/PA6 laminates with and without surface treatment are tested and evaluated by three-point bending tests. Five testing temperatures (30°C, 60°C, 90°C, 120°C, 150°C) and three testing speeds (0.1, 1, 10?mm?min?1) were chosen to investigate the time-temperature behaviour of CF/PA6 laminates. Results showed that PUD surface-treated CF/PA6 laminates exhibited better performance on mechanical properties but lower viscosity at various testing conditions owing to enhanced interfacial bonding capability.  相似文献   

3.
《Ceramics International》2022,48(3):3544-3553
In this study the effects of thermal shock on the impact damage resistance, damage tolerance and flexural strength of Nextel 610/alumina silicate ceramic matrix composites were experimentally evaluated. Composite laminates with balanced and symmetric layup were gradually heated to 1200°C in an air-based furnace and held for at least 30 min before being removed and immersed in water at room temperature. The laminates were then subjected to low velocity impacts via a hemispherical steel impactor. The resultant damage was characterized non-destructively, following which the laminates were subjected to compression tests. Three-point bend tests were also performed to evaluate the effect of thermal shock on the flexural strength and related failure modes of the laminates. Thermally shocked laminates showed smaller internal damage and larger external damage areas in comparison to their pristine counterparts. For the impact energy and resultant damage size considered, the residual compressive strengths for the thermally shocked and pristine laminates were similar.  相似文献   

4.
Process-induced effects on thermoplastic-based composites were investigated for laminates processed under high production rate conditions. Press-formed carbon-fiber-reinforced poly(ether ether ketone) (PEEK) was used as a model system. The morphology and laminate quality were investigated on unidirectional laminates processed at cooling rates from 0.3 to 120°C/s and annealing of 177°C and 300°C. The laminate quality was examined for degree of consolidation, compaction, and fiber-matrix uniformity. Combined calorimetric and density measurements, as well as micrographic techniques, were used for examination of the laminates. The fracture toughness for the laminate was measured as a function of the position over the thickness of a 40-ply thick unidirectional laminate. This study clearly demonstrates the importance of uniform pressure distribution over the laminate to achieve a void free and homogeneous laminate.  相似文献   

5.
This study introduces carbon nanotube buckypaper (CNTBP) into the easily fractured sites of [0°]16 and [0°/90°]4S composite laminates, and comparatively explores how the CNTBP affects the flexural properties of the laminates at 25, ?15, and ?55 °C. Compared to the base [0°]16 and [0°/90°]4S laminates at the same temperature, improvements of the flexural strengths in the order of 4.0–15.3% and 6.5–31.0% are respectively obtained from the corresponding CNTBP‐reinforced [0°]16 and [0°/90°]4S laminates. Importantly, the lower the temperature is, the higher the strength improves. In fact, the CNTBP has little effect on the flexural moduli of the studied laminates, although there is an increasing trend with decreased temperature. Moreover, the introduced CNTBP would significantly change the fracture mechanism of the laminates at low temperature. The present work reveals that the CNTBP exhibits more positive reinforcing capability to the polymer matrix‐based composite laminates at relatively low temperatures.  相似文献   

6.
Present work investigates the effect of hydrothermal aging of flax fiber-reinforced bio-based epoxy resin laminates on the mechanical and thermomechanical properties of the composites. Three different types of bio-based resins were used. Plates reinforced with eight layers plain weave flax fibers of 150 g/m2, manufactured using Resin Transfer Molding (RTM), compression molding or autoclave technique depends on type of the resin. One dimensional Fickian behavior shows a good fitting to the experimental data derived from weight measurements. The water uptake at the equilibrium state in the case of 60 °C temperature was slightly greater than that at 40 °C. The mechanical properties after hydrothermal aging show a significant reduction and do not return to their initial values even after the drying process. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48787.  相似文献   

7.
The aerospace industry uses carbon‐fiber epoxy laminates for structures to reduce weight and increase payload. The “standard” design criterion for strength is that proposed by Tsai‐Wu. For stiffness, which is generally more critical than strength, classical laminated plate theory (LPT) is used. The normal lay‐ups considered for commercial aircraft are made up from 0°, 90° and ± 45° orientations. Angle ply laminates, [± ϕ]ns, with ϕ fixed to some angle such as 20°, are not normally used (although this type of structure is employed with great success in the pressure vessel industry). According to the Tsai‐Wu criterion, such a structure should be extremely weak, which probably accounts for the absence of simple angle ply structures in aerospace designs. However if short and wide samples (aspect. ratio 0.5 or less) are tested, higher values are obtained for modulus and much higher values for strength than the long narrow samples used to develop the Tsai‐Wu criterion. The short and wide sample test results are in agreement with results from tests on tubes. These observations show that there is an “edge softening” effect: long narrow samples have a relatively large amount of this soft edge. Since design software normally uses Tsai‐Wu and LPT, large errors in strength and significant errors in stiffness are possible at this stage, and better lay‐up designs may be totally missed. The experimental work leading to these conclusions is described and innovative designs are discussed.  相似文献   

8.
Unidirectional sheets (prepregs) of blends of polyetherimide (PEI) with a liquid crystalline polymer (LCP) are prepared. The mechanical properties of prepregs at directions of 0°, 45°, and 90° to the machine direction are investigated as a function of draw ratio and LCP concentration. The results show that drawing significantly increases the tensile strength and modulus of prepregs in the machine direction and only slightly decreases these properties in the transverse direction. An increase in the LCP content greatly enhances the tensile strength and modulus in the machine direction but decreases these properties in the 45° and 90° directions. The strain at break of prepregs decreases with LCP content in all directions tested. An abrupt drop in the tensile strength, modulus, and strain at break of prepregs occurs in the 45° and 90° directions when LCP content reaches 40%. Prepregs are used to manufacture unidirectional and quasi-isotropic laminates. Unidirectional laminates show mechanical properties close to those of the corresponding prepregs. The tensile modulus of quasi-isotropic laminates exhibits a continuous increase with increasing LCP content while the tensile strength increases with an LCP content up to 30%, then it decreases rapidly. The morphology of LCP in prepregs is observed to change from disperse to continuous at LCP contents of 40 and 50%. This effect is found to be responsible for the large decrease in tensile strength of prepregs in the 45° and 90° directions and quasi-isotropic laminates at higher LCP concentration. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:329–340, 1997  相似文献   

9.
Cross-ply tapered/stepped laminates with taper angles of 1 and 2° between the top and bottom surfaces were fabricated using T300/943 graphite/epoxy by compression molding. Ply terminations were done internally within the laminate and externally on the surface of the laminate at various cross-sections in order to obtain the taper. Equivalent cross-ply specimens with internal and external ply terminations, respectively, were tested in three point bending. The bending stiffness of the equivalent corss-ply are nearly equal, while the failure modes are significantly different. The tapered laminates with internal ply terminations failed due to a series of delaminations originating at the step corners of the 0° plies. Macroscopically, the specimens with internal ply term nations failed by tensile fracture of the outer plies at relatively higher loads.  相似文献   

10.
This paper reports the responses of basalt unsaturated polyester laminates under static three‐point bending loading and low‐velocity impact. Three kinds of composite materials, unidirectional (0°), cross‐ply (0°/90°) and woven laminates were considered. The laminates were fabricated by layup process and hot pressed under pressure. Static three‐point bending tests and low‐velocity impact tests were conducted to obtain the force–deflection, force–time, deflection–time, velocity–time, and energy–time curves. The results showed that unidirectional (0°) laminates carried more load during static loading, but in the event of dynamic loading, cross‐ply, and woven laminates were more superior. It was observed that the failure of 0° laminates was along the fiber direction while for cross‐ply and woven, the damage was localized, around the impacted locations. From the different combinations of unidirectional (0°), cross‐ply (0°/90°) and woven lamina, the impact behaviors could be optimized with the lowest area density. POLYM. COMPOS., 35:2203–2213, 2014. © 2014 Society of Plastics Engineers  相似文献   

11.
Poly(ether ether ketone) (PEEK) carbon fiber prepreg tapes (APC-2) have been thermoformed into a hemispherical double curvature part under a variety of processing conditions. Conventional matched die molding using aluminum molds (at 200°C) were not successful in thermoforming acceptable parts. Parts with severe wrinkling and folding were obtained. A novel three-piece (steel) mold with built-in sheet clamping arrangement was, therefore, designed and fabricated. This mold was used at 400°C temperature to thermoform parts from preheated preconsolidated laminates. More interestingly, using the above conditions, 8- and 16-ply unconsolidated laminates could be directly thermoformed into parts that were microstructurally sound and exhibited good shape conformity. Results suggest a cycle time of 15 min, with scope for further reduction, if mold cooling is employed. Notwithstanding the simplicity of the thermoforming process, such a short cycle time compares quite favorably with cycle times of several hours for conventional thermosetting resin based composites.  相似文献   

12.
A series of bisphenol A (BPA)‐based 2,2‐bis‐[4‐(3,4‐dicyanophenoxy)phenyl]propane (BAPh) prepolymers and polymers were prepared using BPA as a novel curing agent. Ultraviolet–visible and Fourier transform infrared spectroscopy spectrum were used to study the polymerization reaction mechanism of the BAPh/BPA polymers. The curing behaviors were studied by differential scanning calorimetry and dynamic rheological analysis, the results indicated that the BAPh/BPA prepolymers exhibit large processing windows (109.5–148.5°C) and low complex viscosity (0.1–1 Pa·s) at moderate temperature, respectively. Additionally, the BAPh/BPA/glass fiber (GF) composite laminates were manufactured and investigated. The flexural strength and modulus of the composite laminates are 548.7–632.8 MPa and 25.7–33.2 GPa, respectively. The thermal stabilities of BAPh/BPA/GF composite laminates were studied by thermogravimetry analysis. The temperatures at 5% weight loss (T5%) of the composite laminates are 508.5–528.7°C in nitrogen and 508.1–543.2°C in air. In conclusion, the BAPh/BPA systems can be used as superior matrix materials for numerous advanced composite applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
The effect of heat sealing temperature on the mechanical properties and morphology of OPP/CPP laminate films was investigated. The laminated films were placed in an impulse type heat sealing machine with both CPP sides facing each other. The temperatures investigated ranged from 100 to 250°C. T‐peel and tensile tests in combination with SEM were used to characterize the heat seals. A minimum seal initiation temperature of 120°C was identified for OPP/CPP laminate heat sealing. Peel strength increased sharply from zero at 110°C to maximum at 120°C, after which a gradual decrease was observed. Tensile strength initially increased until 120°C, after which it gradually decreased until 170°C and assumed a constant value beyond that. The initial rise has been associated to cold crystallization, while the reduction between 120°C and 170°C was due to relaxation in molecular orientation. Beyond 170°C, all the orientation in the laminate has been lost so orientation effects are nullified. Morphological studies with SEM revealed that seals were partially formed at lower temperatures, while the laminates were totally fused together at high temperatures, with intermediate temperatures showing properties that lie in between. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 753–760, 2005  相似文献   

14.
This paper is the third in a series describing work done under Air Force sponsorship to develop high temperature polyimide laminates for radomes and other parts for supersonic aircraft. Twelve resin compositions are described and evaluated. Most were prepared from benzophenonetetracarboxylic dianhydride and one or more aromatic diamines. Modifying linkages such as amide, ether, benzimidazole, and oxadiazole were present in some cases. A variety of precure and pressing conditions were studied, best results being obtained with a fully cured prepreg pressed at about 700°F and 200–1000 psi. Most of the laminates were made with E glass cloth, but some work was done also with S glass, Refrasil, and carbon cloth. Initial flexural strengths on E glass of 35–60,000 psi at room temperature, and 20–40,000 psi at 600°F were observed for the better resins. On S glass, slightly higher strengths were observed together with values of about 10,000 psi at 700–1000°F. Aging data on E glass laminates show retention of at least 10,000 psi flexural strength at temperature for about 250 hrs. at 650°F, 1000 hrs. at 600°F, 5000 hrs. at 527°F, and 30,000 hrs. at 482°F. Dielectric constant and dissipation factor at 10 Gc were found to be nearly constant at 3.5–4.4 and 0.005–0.01, respectively, for temperatures up to 662°F and for aging up to 1000 hrs. at 600°F. At frequencies of 60 c and 1 Kc, an increase of dissipation factor with temperature was found and was used as a measure of Tg.  相似文献   

15.
Polyphenylquinoxalines (PPQ) were crosslinked with a tris-benzil comonomer, to alleviate the inherenthigh temperature thermoplasticity, and evaluated as matrices in graphite reinforced composites. The room temperature flexural strength/modulus of Modmor IJ laminates were as high as 245,000 psi/16,6 × 106 psi. Essentially 100 percent retention of ambient mechanical properties was obtained at 371°C using a PPQ matrix from the fully-crosslinked polymer prepared from 4,4′-bis(4″-oxybenzilyl) benzil (BOBB) and 3,3′-diaminQbenzrdine. The degree of high temperature thermoplasticity in the composite was found to be more closely related to the final postcure temperature than to the BOBB crosslink density. The thermoplasticity essentially disappeared when the BOBB comonomer-PPQ laminates were postcured at 482–510°C in nitrogen. Substitution of DMAC for the commonly used m-cresol solvent system allowed facile preparation of prepreg to fabricate low-void laminates and NOL rings.  相似文献   

16.
This article focuses on the quasistatic axial compression behavior and the consequent energy absorption of three different types of carbon/epoxy braided composite tubes. The focus is to evaluate the effect of sample length and braiding angle on the energy absorption and failure mechanism of the braided composite tubes. All tubes were manufactured with carbon fiber through four‐step 1 × 1 braiding process and epoxy resin. Quasistatic axial compression tests were carried out to comprehend the failure mechanism and the corresponding compressive load–displacement characteristics of each braided composite tube. The quasistatic compression test parameters such as the compression peak load and the energy absorption of all these composite tubes were compared. It was found that as the length of the sample increased, the peak load reduced and the energy absorption of the braided tubes at 45° braiding angle was considerably higher than that of other braiding angles of 25° and 35°. The failure modes included matrix crack along the braiding angle, fiber breakage, bulging and debonding between yarns. POLYM. COMPOS., 37:3210–3218, 2016. © 2015 Society of Plastics Engineers  相似文献   

17.
The processability of a phenylethynyl‐terminated imide resin matrix (PETI‐5) composite was investigated. Unidirectional prepregs were made through the coating of an N‐methylpyrrolidone solution of an amide acid oligomer (PETAA‐5/NMP) onto unsized IM7 fibers. Two batches of prepregs were used: one was made by the National Aeronautics and Space Administration in house, and the other was from an industrial source. The composite processing robustness was investigated with respect to the prepreg shelf life, the effect of B‐staging conditions, and the optimal processing window. The prepreg rheology and open hole compression (OHC) strengths were not to affected by prolonged ambient storage (i.e., up to 60 days). Rheological measurements indicated that the PETAA‐5/NMP processability was only slightly affected over a wide range of B‐stage temperatures (from 250 to 300°C). The OHC strength values were statistically indistinguishable among laminates consolidated under various B‐staging conditions. An optimal processing window was established with response surface methodology. The IM7/PETAA‐5/NMP prepreg was more sensitive to the consolidation temperature than to the pressure. A good consolidation was achievable at 371°C (700°F)/100 psi, which yielded a room‐temperature OHC strength of 62 ksi. However, the processability declined dramatically at temperatures below 350°C (662°F), as evidenced by the OHC strength values. The processability of the IM7/PETI‐5 prepreg was robust. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3212–3221, 2006  相似文献   

18.
Self-reinforced sheets (prepregs) have been prepared by stretching extruded sheets made of thermoplastic (TP) and a thermotropic liquid crystalline polymer (LCP) blend. The sheets are formed by extrusion through a coathanger die, device. Processing at this stage is done at a temperature at which both components in the blend are melt processable. These prepregs are laid up in multi-layers in a direction parallel to the stretching direction or in the direction of 45° with respect to each previous layer. The lay-ups are compression molded into unidirectional or isotropic laminates at temperatures below the melt processing temperature of the LCP. Various pairs of TP and LCP have been studied. These include polypropylene and an LCP based on p-oxybenzoyl, terephthaloyl and hydroquinone moieties, polyphenylene oxide (PPO) and polystyrene/PPO alloy and a LCP based on 6-oxy-2-naphthoyl and p-oxybenzoyl moieties. Mechanical properties of the prepregs and laminates were measured and compared with those obtained from injection molded samples. Surprisingly, tensile strength and modulus of isotropic laminates are found to be higher than those of injection molded samples in the flow direction. Morphlogical studies of the prepregs and laminates indicate the presence of well-defined LCP fibers in various thermoplastic matrices.  相似文献   

19.
Liquid crystal polymers (LCP) have been developed for the first time as a thermoplastic matrix for high-performance composites. A successful melt impregnation method has been developed that results in the production of continuous carbon fiber (CF)-reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP-CF composites are comparable to those of epoxy-CF composites. LCP-CF composites have better impact resistance than the latter, although epoxy-CF composites possess superior compression and shear strength. LCP-CF composites have good property retention until 200°F (67% of room temperature value). Above 200°F, mechanical properties are found to decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber.  相似文献   

20.
《Polymer Composites》2017,38(10):2182-2191
This paper demonstrates the results of an experimental study on cross ply carbon/epoxy composite laminates fabricated from high temperature hardener HT972 subjected to impact loading at different velocities and temperatures. The carbon fiber reinforced plastic (CFRP) samples were impacted at velocities 1.5 m/s and 2.5 m/s, each at a temperature level of 30°C, 60°C, 90°C, and 120°C. The impact response of the material towards various velocities and temperatures was determined using impact parameters like peak force, absorbed energy, maximum deflection, and rebound velocity. Result reveals that the velocity and temperature play a significant role in the impact response of the material. The variation in the trend of Flexural After Impact (FAI) strength of composite laminates at different velocities and temperatures was determined using FAI test and these results were further correlated with impact results. The dominating failure modes affecting the residual strength of the samples were found using acoustic emission (AE) monitoring. POLYM. COMPOS., 38:2182–2191, 2017. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号