首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Herein, we report on tin monosulfide (SnS) thin films elaborated by the Chemical Spray Pyrolysis (CSP) technique onto various substrates as simple glass, ITO-, and Mo-coated glasses in order to study the influence of substrates on the physical and chemical properties of Sns thin films. Structural analysis revealed that all films crystallize in orthorhombic structure with (111) as the sole preferential direction without secondary phases. In addition, film prepared onto pure glass exhibits a better crystallization compared to films deposited onto coated glass substrates. Raman spectroscopy analysis confirms the results obtained by X-ray diffraction with modes corresponding well to SnS single-crystal orthorhombic ones (47, 65, 94, 160, 186, and 219 cm ?1) without any additional parasite secondary phase like Sn2S3 or SnS2. Field emission scanning electron microscope revealed that all films have a cornflake-like particles surface morphology, and energy dispersive X-ray spectroscopy analysis showed the presence of sulfur and tin with a nearly stoichiometric ratio in films deposited onto pure glass. High surface roughness and large grains are observable in film deposited onto glass. From optical spectroscopy, it is inferred that band gap energy of SnS/glass and SnS/ITO were 1.64 and 1.82 eV, respectively.  相似文献   

2.
Nanocrystalline indium tin oxide (ITO) film containing 5 wt% Sn was prepared on glass substrate by the spray pyrolysis technique at a substrate temperature of 500 °C. In order to enhance the photosensitivity of ITO, thiourea (CS(NH2)2 was added to the precursor to obtain the [S]/[In] proportion of 0.1, 0.2, 0.4 and 0.6. The X-ray diffraction patterns showed that beside the bixbyite structure of ITO, the characteristic peaks corresponding to Sn2S3 appeared in XRD profiles recorded for the films with [S]/[In] = 0.1 and 0.2. In addition, sulfur additive caused a considerable decline in crystallinity quality. The optical properties of the films were studied using transmittance measurements in the wavelength range 300–1,000 nm. As a result, ITO and ITO-Sn2S3 thin films were prepared with resistivity of 3.06–3.7 × 10?4 Ω cm and a transmittance of 88–91 % at the wavelength of 550 nm. Moreover, the electrical resistances of ITO and ITO-Sn2S3 films as a function of time were measured in darkness and under illumination of light in the visible range. The photoresistance results revealed that the ITO-Sn2S3 film with [S]/[In] = 0.2 was efficiently sensitive to visible light for photoconductive sensor applications, besides being high conductive and transparent.  相似文献   

3.
Because of the miniaturization trend in electronic devices in recent years, the issue of reliability of solder joints in these miniaturized devices becomes very critical. Studies have shown that a thin layer of Ni is effective in reducing the interfacial IMC growth between Cu and Sn-based solder. This is because the reaction kinetics of Ni–Sn compounds are much slower than that of Cu–Sn IMCs. In this study, zinc is incorporated into the nickel barrier film in the form of Ni–Zn alloy by electrodeposition. The effects of the presence of Zn on the interfacial reactions between nickel barrier film and Sn–3.8Ag–0.7Cu (SAC) and Sn–3.5Ag (SA) solders are investigated. Ni–Zn alloy films with 1.73 wt% Zn were prepared from ammoniacal diphosphate baths. Elemental composition of the alloy film was determined by energy dispersive X-ray spectroscopy while X-ray diffraction method was used to determine the phases present in the alloy film. Solders’ spreading rate was characterized with the use of optical microscope. Reflows were done for 1 and 12 cycles to investigate the effect of multiple reflows on the IMC growth and morphology. Results have shown that the IMC formed at the interface of SA/Ni and SAC/Ni was Ni3Sn4 and (Cu,Ni)5Sn6, respectively. (Ni,Cu)3Sn4 IMC was formed at the interface of SA/Ni–Zn alloy film. No spalling was detected at the SA/Ni–Zn solder joint. On the other hand, it has been observed that (Ni,Cu)3Sn4 and (Cu,Ni)6Sn5 layer with continuous non-uniform morphology were formed on the SAC/Ni–Zn alloy film after 1× reflow. As the number of reflow increased, (Cu,Ni)6Sn5 layer spalled from the interface leaving only (Ni,Cu)3Sn4 IMC at the interfacial region.  相似文献   

4.
SnS films with thicknesses of 20-65 nm have been deposited on glass substrates by thermal evaporation. The physical properties of the films were investigated using X-ray diffraction (XRD), scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and ultraviolet-visible-near infrared spectroscopy at room temperature. The results from XRD, XPS and Raman spectroscopy analyses indicate that the deposited films mainly exhibit SnS phase, but they may contain a tiny amount of Sn2S3. The deposited SnS films are pinhole free, smooth and strongly adherent to the surfaces of the substrates. The color of the SnS films changes from pale yellow to brown with the increase of the film thickness from 20 nm to 65 nm. The very smooth surfaces of the thin films result in their high reflectance. The direct bandgap of the films is between 2.15 eV and 2.28 eV which is much larger than 1.3 eV of bulk SnS, this is deserving to be investigated further.  相似文献   

5.
The Cu2ZnSnS4 (CZTS) films are successfully prepared using a process of sequentially electrodeposited Cu–Sn–Zn precursors by a novel electrolyte formula and optimized parameters on Mo substrate, succeeded by annealing in saturated sulfur atmosphere. The results show that the Cu/Sn/Zn precursor sequence is strict, and optimized electro-deposition parameters are as follows: ?0.6 V, 5 min for Cu, ?1.2 V, 2 min for Sn, and ?1.35 V, 10 min for Zn. Layered precursors firstly alloy into Cu6Sn5 and CuZn binary phases under low annealing temperature. Then Cu6Sn5 and CuZn alloys decompose in sulfur atmosphere, and form CuS, SnS and ZnS binary phases. Cu2SnS3 ternary phase forms through reaction between CuS and SnS with increasing the temperature. Finally, the CZTS film is synthesized through reaction among binary and ternary sulfides. The photoluminescence peak from the CZTS films synthesized at 550 °C for 1 h is about at 1.49 eV.  相似文献   

6.
This paper reports the synthesis and characterization of nanocrystalline indium tin oxide (ITO) and its application as humidity and gas sensors. The structure and crystallite size of the synthesized powder were determined by X-ray diffraction. The minimum crystallite size was found 5 nm by Debye–Scherrer equation and confirmed by transmission electron microscopy image. Optical characterizations of ITO were studied using UV–visible absorption spectroscopy and Fourier transforms infrared spectroscopy. Thermal analysis was carried out by differential scanning calorimetry. Further, the ITO thin film was fabricated using sol–gel spin coating method. The surface morphology of the fabricated film was investigated using scanning electron microscopy images. For the study of humidity sensing, the thin film of ITO was exposed with humidity in a controlled humidity chamber. The variations in resistance of the film with relative humidity were observed. The average sensitivity of the humidity sensor was found 0.70 MΩ/%RH. In addition, we have also investigated the carbon dioxide (CO2) and liquefied petroleum gas sensing behaviour of the fabricated film. Maximum sensitivity of the film was ~17 towards CO2. Its response and recovery times were ~5 and 7 min respectively. Sensor based on CO2 is 97 % reproducible after 3 months of its fabrication. Better sensitivity, small response time and good reproducibility recognized that the fabricated sensor is challenging for the detection of carbon dioxide.  相似文献   

7.
The influence of TiO2 nanoparticles on the growth of intermetallic compound (IMC) between Sn–3.0 wt% Ag–0.5 wt% Cu–x wt% TiO2 (x = 0, 0.02, 0.05, 0.1, 0.3, and 0.6) composite solder and the Cu substrate during isothermal aging process at temperatures of 120, 150, and 190 °C has been investigated in this study. Scanning electron microscopy was used to observe the microstructural evolution of the solder joints and measure the thickness of IMC layer. The IMC phases were identified by energy-dispersive X-ray spectroscopy and X-ray diffractometry. Results show that two intermetallic layers, Cu6Sn5 and Cu3Sn phase are formed at the interface and the morphology of the Cu6Sn5 phase transforms from scallop-type to layer-type in Sn–3.0Ag–0.5Cu–xTiO2 solder joints. The addition of nano-TiO2 has a strong influence on the growth of overall IMC layers, and the thickness of overall IMC layers rapidly increase with aging temperature and time. The growth rates and activation energies of the IMC growth of six solder alloys were determined. Results reveal that, for three different ageing temperatures, the growth rates of overall IMC layers decrease with an increase in nano-TiO2 proportion. The activation energies for the growth of overall IMC layers range from 48.34 to 63.61 kJ/mol. Adding nano-TiO2 to Sn–3.0Ag–0.5Cu solder could evidently increase the activation energy of overall IMC layers, reduce the atomic interdiffusion rate, and thus inhibit excessive growth of overall IMC layers.  相似文献   

8.
Due to toxicity of lead in the commercial solder, lead-free solders were proposed. Among the potential lead-free solders, the Sn–Ag–Cu solders were considered as a potential replacement. To further improve the solder properties, a fourth element was added into the Sn–Ag–Cu solder. The present study investigates the effect of different weight percentage of Zn (up to 0.7 wt%) into the Sn-3.5Ag-1.0Cu solder on intermetallic and growth rate (k) after long time thermal aging. The solders were prepared using powder metallurgy method and X-ray diffraction analysis shows that there were Cu6Sn5, Cu3Sn, CuZn and Ag3Sn phases present after solder preparation. The solders were reacted with Cu substrate at 250 °C for 1 min and aged at 150 °C until 1,000 h. The morphology of the intermetallic was observed under scanning electron microscope and the elemental distribution was confirmed by energy dispersive X-ray. Intermetallic thickness and growth kinetic result show that the additions of 0.4 % zinc is sufficient in retarding the Cu6Sn5 and Cu3Sn intermetallic growth.  相似文献   

9.
The growth kinetics and morphology of the interfacial intermetallic compound (IMC) between Sn–3Ag–0.5Cu–xFe (x = 0, 0.5 wt%, 1 wt%) composite solders and Cu substrate were investigated in the present work. The Sn–Ag–Cu–Fe/Cu solder joint were prepared by reflowing for various durations at 250 °C and then aged at 150 °C. During soldering process, Fe particles quickly deposited in the vicinity of IMC, resulting in the formation of Fe-rich area. Isothermal equation of chemical reaction and phase diagrams were used to explain the effect of Fe on the growth kinetics of IMC during liquid-state interfacial reaction. It was shown that Fe could effectively retard the growth of interfacial Cu6Sn5 and Cu3Sn layers during liquid-state reaction and reduce the size of Cu6Sn5 grains. Small cracks were observed in the Cu6Sn5 grains after reflowing for 2 min while they were found in the other composite solders reflowing for about 30 min. The Fe tended to suppress the growth of the Cu3Sn layer during solid-state aging. However, the total thickness of IMCs (Cu6Sn5 + Cu3Sn) for the composite solders with Fe particles was similar to that for SnAgCu without Fe particles.  相似文献   

10.
Thin films of copper tin sulfide (Cu2SnS3) were obtained by sulfurizing a stack of thin layers of Cu and SnS in nitrogen atmosphere. The film stack was obtained by the sequential electrodeposition of SnS and Cu. The Cu2SnS3 film was characterized for structural, morphological, composition, optical, spectroscopic, and electrical properties. The optimum condition for the formation of Cu2SnS3 was developed after testing different sulfurization temperatures. The films were polycrystalline with monoclinic structure which was confirmed by Raman and transmission electron microscopy analysis. The interplanar spacings estimated from the high resolution transmission electron microscopy images are 2.74, 2.19, and 2.06 Å. The average crystallite size is 13 nm, and the band gap of the film is in the range of 1 eV. The surface chemical composition determined by X-ray photoelectron spectroscopy showed the Cu:Sn:S ratio as 1.9:1:2.85 which is close to the stoichiometric Cu2SnS3. The films are p-type, photosensitive, and the conductivity measured in dark was in the range of 4 × 10?3 Ω?1 cm?1. The comprehensive characterization presented in this paper will update the knowledge on this material.  相似文献   

11.
Tin sulfide thin films on soda-lime glass substrate were prepared by co-evaporation. This technique uses a vapor phase procedure involving chemical reactions between the precursor species evaporated simultaneously. The influence of the substrate temperature in the crystal structure and chemical composition were determined by X-ray diffraction and energy dispersive analysis of X-rays, showing that thin films crystallized in SnS, SnS2, and Sn2S3 phases. Scanning electron microscope shows thin films with homogenous and uniform surface. Some of the samples were annealed to study the variation of structural, chemical, and optical properties. The variation of refractive index (n), extinction coefficient (k), and dielectric constant (ε) with wavelength and photon energy are reported. The energy band gap was calculated from optical transmittance and reflectance measurements in the range 300–1500 nm. The calculated energy band gap values were between 1.75 and 2.3 eV, depending on the phase in which crystallized the different thin films.  相似文献   

12.
Ultra-thin ITO films with thickness of 4–56 nm were deposited on glass by dc magnetron sputtering using 5 wt% SnO2 doped ITO target. The effect of film thickness on the structural, electrical, optical properties and reliability was investigated for its application to touch panels. The 4 nm thick ITO film shows amorphous structure and other films present polycrystalline structure and the (222) preferred orientation. The ultra-thin ITO films show smooth surface with low Ra surface roughness smaller than 1 nm. The sheet resistance and visible transmittance of the ITO films decrease with the increase in film thickness. The 4 nm thick ITO film shows the highest resistivity (3.08 × 10?3 Ω cm) with low carrier density and Hall mobility, and other films have excellent conductivity (<4.0 × 10?4 Ω cm). The ITO films show high transmittance (>85 %) in visible light range and do not generate interference ripples between film and substrate interface. The ITO films with thickness of 18–56 nm show stable reliability under high temperature, high temperature & high humidity and alkaline environmental conditions. The only electrical degradation corresponds to the increase of sheet resistance in the ITO films with thickness of 4–12 nm.  相似文献   

13.
Ogah E. Ogah 《Thin solid films》2009,517(7):2485-340
SnS is of interest for use as an absorber layer and the wider energy bandgap phases e.g. SnS2, Sn2S3 and Sn/S/O alloys of interest as Cd-free buffer layers for use in thin film solar cells. In this work thin films of tin sulphide have been thermally evaporated onto soda-lime glass substrates with the aim of optimising the properties of the material for use in superstrate configuration device structures. The thin films were characterised using energy dispersive X-ray analysis (EDS) to determine the film composition, X-ray diffraction (XRD) to determine the phases present and structure of each phase, transmittance versus wavelength measurements to determine the energy bandgap and scanning electron microscopy (SEM) to observe the surface topology and topography. These properties were then correlated to the deposition parameters. Using the optimised conditions it is possible to produce thin films of tin sulphide that are pinhole free and conformal to the substrate that are suitable for use in thin film solar cell structures.  相似文献   

14.
Three-dimensional ordered macroporous (3DOM) Cu2O film was prepared on indium-tin-oxide (ITO) glass using photonic crystal template-assisted electrodeposition approach. The technological process involved the following steps: preparation of three-dimensional (3D) photonic crystal template, potentiostatic electrodeposition of Cu2O into the template, and template removal. 210 nm polystyrene (PS) spheres were used to prepare the 3D photonic crystal template by means of a vertical deposition technique on ITO glass. A two-electrode cell was used for electrodeposition, in which the anode was graphite and the cathode was PS-coated ITO glass. The electrodeposition solution consisted of 0.1 M sodium acetate and 0.02 M copper acetate and was acidified at pH 5.7. Via electrodeposition, the interstitial space of the packed PS photonic crystal template was filled with Cu2O. After removal of the PS photonic crystal template by immersing in tetrahydrofuran solution, 3DOM Cu2O film with a homogeneous area of 20 × 10 mm2 was obtained. The film was characterized by field emission scanning electron microscopic (FE-SEM) and X-ray diffraction. The results indicated that the as-prepared Cu2O film was of high purity, good homogeneity, and a well-ordered macroporous structure.  相似文献   

15.
Microstructural and surface morphological studies of Co (2.5%) doped ZnS thin films deposited at different substrate temperatures (TS) of 200, 400 and 600 °C by means of pulsed laser deposition are presented. The deposited films are in wurtzite-hexagonal crystal structure as confirmed by X-ray diffraction and Raman spectroscopy techniques. The films deposited at higher TS show columnar morphology, as evidence by transmission electron microscopy measurements. Images of the surface topography have been taken by atomic force microscopy (AFM) for the film deposited at different TS. The film deposited at TS of 200 °C shows cone-like structures while deposited at TS of 400 and 600 °C show columnar structures. A fractal analysis has been performed on AFM images to understand the microstructure and surface morphology of thin film at different TS. Fractal analysis also reveals the morphological changes in the film with increasing TS. The observed ferromagnetism is correlated with columnar growth of the film which can be used as diluted magnetic semiconductor for spintronic applications.  相似文献   

16.
Undoped and Zn-doped SnO2 thin films are deposited onto glass substrates by sol–gel spin coating method. All the films are characterized by X-ray photon spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR). XPS shows that Sn presence as valence of Sn4+ in the prepared SnO2 thin films instead of Sn2+. In addition, it also exhibits the amount of Zn in SnO2 thin films, which increases with increasing Zn doping percentage. The Zn (2P3/2) peak is symmetric and centred at around 1,021.73 eV which shifts to the lower binding energy of 1,020.83 eV for 15 at.% Zn doped SnO2 thin film. FTIR study is used to describe the local environment of undoped and Zn-doped SnO2 thin films which also confirms the synthesis of undoped and Zn-doped SnO2 thin films. It is found that the resistance of SnO2 thin films increases as Zn doping concentration increases at room humidity. The resistance of all the samples increases as relative humidity (RH) increases. The sensitivity of SnO2 thin films increases as RH increases while it decreases as Zn doping percentage increases. Response time of SnO2 thin film decreases as Zn doping percentage increases and recovery time slightly increases with doping percentage.  相似文献   

17.
Large scale of bowl-like porous WO3 film was successfully fabricated by electrodeposition into two-dimensional (2D) polystyrene (PS) colloidal crystal template. The technological process involved the following steps: colloidal crystal template preparation, potentiostatic electrodeposition of WO3 into the template, and template removal. 1.5 μm PS spheres were used to prepare the 2D colloidal crystal template by means of spinning on indium-tin-oxide (ITO) glass. A two-electrode cell was used for electrodeposition, in which the anode was graphite and the cathode was PS-coated ITO glass. The electrodeposition solution consisted of 25 mM Na2WO4 and 30 % H2O2 acidified at pH 1.2. Via electrodeposition, the interstitial space of the densely packed PS colloidal crystal template was filled with WO3. Bowl-like porous WO3 film was obtained after the removal of the PS colloidal crystal template by a thermal treatment at 475 °C. Scanning electron microscopic, X-ray diffraction spectra and transmission electron microscopy were performed to analyze and compare bowl-like porous WO3 film with dense WO3 film. The homogeneous area of the obtained film was 25 × 15 mm2. The template-assisted electrodeposition method was simple and low-cost that can be completed within 30 min.  相似文献   

18.
The tin doped indium oxide (ITO) thin films prepared by sol–gel spin coating method with In(NO3)3H2O and SnCl4·5H2O as indium and tin sources respectively is presented. The as deposited samples were annealed at 500 °C for 2 h in order to improve the crystallinity. The structural, morphological and optical properties of the films were analysed by using X-ray diffraction, scanning electron microscope (SEM), UV–Vis transmission spectra and photoluminescence, spectra analysis. The SEM images ensure the uniform and smooth surface of the as prepared and annealed film. The optical transmittance of more than 85 % has been observed in the UV–Vis region with a band gap of 3.91 and 3.73 eV for the as prepared and annealed films of ITO respectively. The PL spectra reveal that the optical properties were significantly improved due to the annealing effect. The annealed film shows high sensitivity for humidity approximately two order changes in the resistance and the sensitivity increases for different relative humidity from 10 to 90 % due to the physisorption between the water molecules and the surface of the thin films.  相似文献   

19.
SnS nanoparticles were synthesised by the precipitation method using SnCl2.2H2O and Na2S.xH2O and the nanoparticles were characterised by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. From the particles’ XRD pattern, a strong peak at 2θ = 31.5? was observed, which confirms the Herzenbergite orthorhombic crystal structure of SnS. The FTIR result also confirmed the SnS nanoparticles at 2354 cm?1 and 615 cm?1. Second, thin SnS films were prepared on a glass substrate by the electron beam evaporation technique at room temperature and annealed at 100°C, 200°C and 300°C. The effect of the annealing temperature on structural and optical properties of the SnS films was characterised by XRD and ultraviolet–visible (UV–Vis) analysis. From the experimental studies, optical absorption of SnS films increases with respect to the annealing temperature, while the values of band gap energy (Eg) get reduced from 1.77 to 1.57 eV.  相似文献   

20.
In the present study, the synthesis of Tin doped indium oxide (ITO) nanopowder at different compositions (In/Sn = 0, 5, 10, 15 at %) was carried out by co-precipitation method. The decomposition of precipitated indium tin acetylacetonate precursor to form In2O3–SnO2 (Sn1?xInxO2) at 400 °C was confirmed by the thermal and FTIR studies. The changes in strain and grain size of the synthesized particle with respect to dopant concentration were determined from the X-ray diffraction (XRD) analysis. Transmission electron microscopy (TEM) images support to confirm the grain size. The optical properties on ITO nanoparticles were analyzed with UV–visible spectroscopy, and band gap was found to vary from 3.62 to 3.89 eV with Sn dopant concentration. This variation was ascribed to the quantum confinement effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号