首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We explore code-division multiple-access (CDMA) systems with multiple transmit and receive antennas combined with space-time trellis codes over a frequency-selective channel. The conventional noniterative multiuser minimum mean square error (NIMU-mmse) detector is generalized to accommodate multiple antennas and multiple paths and then extended to include the turbo principle in an iterative fashion, allowing interference regeneration and cancellation at the receiver. Iterative multiuser mmse (IMU-mmse) receivers employing chip- and symbol-level detectors are derived and their equivalence is demonstrated. Computer simulations show that the proposed iterative mmse equalizers completely remove the interference of the other users in a multiantenna environment; they provide a significant improvement over the NIMU-mmse detector and they effectively achieve the single-user performance, even in a fully loaded system. Two suboptimal iterative mmse detectors, which allow a computational complexity reduction of up to three orders of magnitude compared to the IMU-mmse and still outperform the NIMU-mmse detector, are introduced. The proposed iterative mmse equalizers are analyzed and supported by extensive computer simulations.  相似文献   

2.
The problem of joint multiuser detection and channel estimation in frequency-selective Rayleigh fading CDMA channels is considered. First the optimal multiuser detector for such channels is derived, which is seen to have a computational complexity exponential in the product of the number of users and the length of the transmitted data sequence. Two suboptimal detectors are then developed and analyzed, both of which employ decorrelating filters at the front-ends to eliminate the multiple-access interference and the multipath interference. The symbol-by-symbol detector uses a Kalman filter and decision feedback to track the fading channel for diversity combining. The per-survivor sequence detector is in the form of the Viterbi algorithm with the trellis updates being computed by a bank of Kalman filters in the per-survivor fashion. Both suboptimal detectors require the knowledge of all waveforms of all users in the channel and the channel fading model parameters. Adaptive versions of these suboptimal detectors that require only the knowledge of the waveform of the user of interest are then developed. The adaptive receivers employ recursive-least-squares (RLS) minimum-mean-square-error (MMSE) filters at the front-end to mitigate the interference, and use a bank of linear predictors to track the fading channels. It is shown that the front-end RLS-MMSE filters can be implemented using systolic arrays to exploit massively parallel signal processing computation, and to achieve energy efficiency. Finally, the performance of the suboptimal detectors and their adaptive versions are assessed by simulations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We propose a fuzzy parallel interference cancellation (PIC) multiuser detection/vector channel estimation (VCE) scheme in Rayleigh fading channels. The VCE is based on a first‐order auto‐regressive model and an expectation‐maximization algorithm. The signal‐to‐interference ratio and signal‐to‐noise ratio are estimated from the vector channel model's parameters, and we adapt the weight of each interference cancellation path via fuzzy inference mechanism. The proposed fuzzy PIC and VCE cooperate in a way such that some of the fuzzy PIC input parameters come from the channel predictor and the fuzzy PIC makes the channel predictor be more accurate at the next PIC stage. Computing weights via fuzzy adaptive method adds insignificant complexity because it involves only table lookup. The simulation results show that the proposed fuzzy PIC/VCE scheme performs better than the improved PIC/vector channel estimation scheme with optimal parameter in fast‐varying Rayleigh fading channels. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we present a blind code-timing estimator for asynchronous code-division multiple-access (CDMA) systems that use bandlimited chip waveforms. The proposed estimator first converts the received signal to the frequency domain, followed by a frequency deconvolution to remove the convolving chip waveform, and then calculates the code-timing estimate from the output of a narrowband filter with a sweeping center frequency, which is designed to suppress the overall interference in the frequency domain. The proposed estimator is near-far resistant, and can deal with time- and frequency-selective channel fading. It uses only the spreading code of the desired user, and can be adaptively implemented for both code acquisition and tracking. We also derive an unconditional Crame/spl acute/r-Rao bound (CRB) that is not conditioned on the fading coefficients or the information symbols. It is a more suitable lower bound than a conditional CRB for blind code-timing estimators which do not assume knowledge of the channel or information symbols. We present numerical examples to evaluate and compare the proposed and several other code-timing estimators for bandlimited CDMA systems.  相似文献   

5.
Coping with time-selective fading channels is challenging but also rewarding, especially with multiantenna systems, where joint space-Doppler diversity and coding gains can be collected to enhance performance of wireless mobile links. These gains have not been quantified, and space-time coded systems maximizing joint space-Doppler benefits have not been designed. Based on a parsimonious basis expansion model for the underlying time-selective (and possibly correlated) channels, we quantify these gains in closed form. Furthermore, we develop space-time-Doppler coded systems that guarantee the maximum possible space-Doppler diversity, along with the largest coding gains within all linearly coded systems. Our three novel designs exploit knowledge of the maximum Doppler spread, and each offers a uniquely desirable tradeoff, including high spectral efficiency, low decoding complexity, and high performance. Our analytical results are confirmed by simulations and reveal the relative of merits of our three designs in comparison with an existing approach.  相似文献   

6.
The problem of pilot-symbol-aided estimation of multipath fading channels in up-link code-division multiple-access (CDMA) systems is considered. The transmitted symbol streams of each user are divided into time-slots; and each time-slot contains a number of pilot-symbols followed by information data symbols. Channel estimation is based on interpolation of the channel values corresponding to the pilot symbols in adjacent time-slots. Existing channel estimation techniques, including the weighted multislot average method and the wavelet expansion method, are studied. Two new channel estimation methods, namely, the robust channel interpolator, and the polynomial channel interpolator, are developed and are compared with these techniques. It is seen that the two new channel estimation methods significantly outperform the existing methods in multipath fading CDMA systems, for a wide range of Doppler values, and under various receiver schemes (with single or multiple receive antennas), such as the RAKE receiver, the interference cancellation receiver, and a receiver which performs iterative channel estimation and interference cancellation.  相似文献   

7.
This paper focuses on the design of a multiuser receiver structure for the reverse link of a code-division multiple-access communication system, in the presence of multipath effects and using an antenna array at the base station receiver. The algorithm presented solves the complex multidimensional problem of channel estimation in this complex scenario using a maximum-likelihood approach. This channel estimation technique requires the transmission of a training sequence or feedback of detected data. Once a composite channel-impulse response of each user is estimated, it is directly used in the detection process instead of first extracting the individual channel parameters, such as path delays and attenuation factors. The paper presents a framework that facilitates a computationally efficient solution to the combined problem of channel estimation and detection in a scenario involving multiple users, multiple paths, and multiple sensors at the receiver  相似文献   

8.
The authors propose a new interference cancellation scheme called the symbol-by-symbol based adaptive interference canceller (SAIC), which adaptively estimates and removes both multiple access interference (MAI) and intersymbol interference (ISI) at the output of the Rake receiver. The SAIC is considerably simpler to implement than existing techniques; computer simulation results demonstrate that it can perform much better than conventional Rake receivers  相似文献   

9.
This paper addresses the problem of channel estimation for direct-sequence code-division multiple-access (DS-CDMA) systems with time-varying multipath fading channels. The multipath fading channels are modeled as autoregressive (AR) models. A method is first proposed to convert the time-varying regression model due to the time-varying nature of users' information symbols into a time-invariant one. Then, a polynomial approach is proposed to obtain the minimum mean square error (MMSE) estimator. The uncertainty of the channel model and decision errors of the DS-CDMA detector are taken into consideration in the design of the MMSE estimator. Compared with the Kalman estimator, the computational complexity of the proposed algorithm is much lower. The simulation results show that the proposed estimator provides a comparable estimation performance with the Kalman estimator and is robust for fast-fading channels.  相似文献   

10.
In this paper, we consider training-based symbol timing synchronization for continuous phase modulation over channels subject to flat, Rayleigh fading. A high signal-to-noise-ratio maximum-likelihood estimator based on a simplified channel correlation model is derived. The main objective is to reduce algorithm complexity to a single-dimensional search on the delay parameter, similar to that of the static-channel (slow fading) estimator. The asymptotic behavior of the algorithm is evaluated, and comparisons are made with the Cramer-Rao lower bound for the problem. Simulation results demonstrate highly improved performance over the conventional, static-channel delay estimator.  相似文献   

11.
In this paper, we consider a generic model of space-time bit-interleaved coded modulation (ST-BICM) on a multiple-input multiple-output (MIMO) Rayleigh fading multipath channel. A practical low-complexity receiver structure performing iteratively MIMO data detection, channel decoding and channel estimation, is presented. The MIMO data detection, employing a reduced-state list-type soft output Viterbi algorithm enables to cope with severe channel intersymbol interference (ISI) without MIMO prefiltering. Among other results, simulations show that our approach can dramatically improve the downlink performance of time-division multiple access (TDMA) systems with high order modulation, keeping a reasonable complexity at the receiver side.  相似文献   

12.
In this paper, we investigate the performance of an adaptive multistage detection scheme for direct‐sequence code‐division multiple‐access (DS‐CDMA) systems. The first stage consists of an adaptive multiuser detector which is based on the linear constrained minimum variance (LCMV) criterion. The interference cancellation (IC) occurs in the second stage. The performance of the iterative receiver over both flat and frequency‐selective fading channels is investigated and compared to the single‐user bound. In all cases, and under heavy system loads with near‐far problems, the iterative receiver is shown to offer substantial performance improvement and large gain in user‐capacity relative to the standard LCMV. In flat‐fading channels, our results show that the performance of the iterative detector is very close to the single‐user bound. For the frequency‐selective channel, this performance is noted to be in the order of 1 dB far from the single‐user bound. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
This paper concerns the estimation of a frequency offset of a known (pilot) signal propagated through a slowly fading multipath channel, such that channel parameters are considered to he constant over the observation interval. We derive a maximum-likelihood (ML) frequency estimation algorithm for additive Gaussian noise and path amplitudes having complex Gaussian distribution when covariance matrices of the fading and noise are known; we consider in detail the algorithm for the white noise and Rayleigh fading, in particular, for independent fading of path amplitudes and pilot signals with diagonal autocorrelation matrices. For the latter scenario, we also derive an ML frequency estimator when the power delay profile is unknown, but the noise variance and bounds for the path amplitude variances are specified; in particular, this algorithm can be used when path delays and amplitude variances are unknown. Finally, we consider frequency estimators which do not use a priori information about the noise variance; these algorithms are also operable without timing synchronization. All the frequency estimators exploit the multipath diversity by combining periodograms of multipath signal components and searching for the maximum of the combined statistic. For implementation of the algorithms, we use a fast Fourier transform-based coarse search and fine dichotomous search. We perform simulations to compare the algorithms. The simulation results demonstrate high accuracy performance of the proposed frequency estimators in wide signal-to-noise ratio and frequency acquisition range.  相似文献   

14.
A decision-feedback maximum a posteriori (MAP) receiver is proposed for code-division multiple-access channels with time-selective fading. The receiver consists of a sequence-matched filter and a MAP demodulator. Output samples (more than one per symbol) from the matched filter are fed into the MAP demodulator. The MAP demodulator exploits the channel memory by delaying the decision and using a sequence of observations. This receiver also rejects multiple-access interference and estimates channel fading coefficients implicitly to give good demodulation decisions. Moreover, computer simulations are performed to evaluate the bit-error rate performance of the receiver under various channel conditions  相似文献   

15.
该文研究了多径衰落的分形性质,提出了一种利用分形维数和小波重构来改进最小均方误差方法的新型多径衰落信道估计算法。该算法改进了衰落信道参数估计的准确度,并消除了判决方法的错误传递性。仿真结果表明该算法能较准确地估计出多径衰落信道的参数,显著提高快衰落条件下接收机的误码性能。  相似文献   

16.
We study an improved receiver with iterative channel estimation and decoding for wireless multipath channels with RAKE reception. To keep the complexity low, iterative channel estimation is done on the equivalent channel at the RAKE output. Output after Turbo decoding iteration(s) is processed to yield a better channel estimate.  相似文献   

17.
Space-time processing and multiuser detection are two promising techniques for combating multipath distortion and multiple-access interference in code division multiple access (CDMA) systems. To overcome the computational burden that rises very quickly with increasing numbers of users and receive antennas in applying such techniques, iterative implementations of several space-time multiuser detection algorithms are considered here. These algorithms include iterative linear space-time multiuser detection, Cholesky iterative decorrelating decision-feedback space-time multiuser detection, multistage interference canceling space-time multiuser detection, and expectation-maximization (EM)-based iterative space-time multiuser detection. A new space-time multiuser receiver structure that allows for efficient implementation of iterative processing is also introduced. Fully exploiting various types of diversity through joint space-time processing and multiuser detection brings substantial gain over single-receiver-antenna or single-user-based methods. It is shown that iterative implementation of linear and nonlinear space-time multiuser detection schemes discussed in this paper realizes this substantial gain and approaches the optimum performance with reasonable complexity. Among the iterative space-time multiuser receivers considered in this paper, the EM-based (SAGE) iterative space-time multiuser receiver introduced here achieves the best performance with excellent convergence properties.  相似文献   

18.
This paper deals with uplink Direct-Sequence Code Division Multiple Access (DS-CDMA) transmissions over mobile radio channels. A new interference cancellation scheme for multiuser detection, calledSIC/RAKE, is presented. It is based on a modified multistage Successive Interference Cancellation (sic) structure that enables efficient detection in multipath propagation environments, thanks to a single userRAKE receiver incorporated in each unit of thesic structure. Furthermore, a modified version of thesic structure, calledSIC/MMSE, that ensures convergence to theMMSE detector rather than to the decorrelating detector has been suggested. The convergence of theSIC/RAKE andSIC/MMSE methods is proved. Simulation results for the Universal Mobile Telecommunication System (UMTS) have been carried out for flat fading Rayleigh multipath channels, showing that the proposed detector is resistant to the near-far effect and that low performance loss is obtained compared to the single-user bound.  相似文献   

19.
One major assumption in all orthogonal space-time block coding (O-STBC) schemes is that the channel remains static over the entire length of the codeword. However, time selective fading channels do exist, and in such case the conventional O-STBC detectors can suffer from a large error floor in the high signal-to-noise ratio (SNR) cases. This paper addresses such an issue by introducing a parallel interference cancellation (PIC) based detector for the G/sub i/ coded systems (i=3 and 4).  相似文献   

20.
We explore code-division multiple-access systems with multiple transmitter and receiver antennas combined with algebraic constellations over a quasi-static multipath fading channel. We first propose a technique to obtain transmit diversity for a single user over quasi-static fading channels by combining algebraic constellations with full spatial diversity and spreading sequences with good cross-correlation properties. The proposed scheme is then generalized to a multiuser system using the same algebraic constellation and different spreading sequences. We also propose a linear multiuser detector based on the combination of linear decorrelation with respect to all users, and the application of the sphere decoder to decode each user separately. Finally, we consider the generalization to multipath fading channels where the additional diversity advantage due to multipath is exploited by the sphere decoder, and a method of blind channel estimation based on subspace decomposition is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号