首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
In this paper, we develop an analytical framework for performance analysis of generic bit-interleaved coded modulation orthogonal frequency-division multiplexing (BICMOFDM) systems impaired by ultra-wideband (UWB) interference. For practical relevance we consider multi-band OFDM (MB-OFDM), direct-sequence UWB (DS-UWB), and impulseradio UWB (IR-UWB) interference formats following recent IEEE/ECMA standards or standard proposals. Besides the exact analysis we calculate the bit error rate (BER) for the case when the UWB interference is modeled as additional Gaussian noise. Our results show that in general the BER of the BICM-OFDM system strongly depends on the UWB format and the OFDM sub-carrier spacing. While the Gaussian approximation is very accurate for DS-UWB, it may severely overor underestimate the true BER for MB-OFDM and IR-UWB interference. Our analysis is applicable to e.g. IEEE 802.11 wireless local area networks (WLANs), IEEE 802.16 wireless access systems (WiMAX), and 4th generation mobile communication systems. Furthermore, since the ECMA MB-OFDM standard is also based on the BICM-OFDM concept, our analysis can also be used to evaluate the impact of other UWB signals on ECMA MB-OFDM UWB systems.  相似文献   

2.
This work presents a high rate UWB transceiver chipset implemented in a 130 nm CMOS technology for WBAN and biomedical applications in the 3–5 GHz band. The transmitter architecture is based on a double-filter excitation technique that can generate high magnitude pulses and address bipolar modulations such as BPSK. Measurements show that bipolar pulses with a peak-to-peak voltage of 1.9 Vpp for a power consumption of 139 µW@100 kbps can be generated. The receiver is a non-coherent architecture based on LNA followed by an envelope detector. A BER of 10?3 is achieved for a 3–5 GHz input peak-to-peak amplitude of 3.4 mVpp which corresponds to a ?89.3 dBm sensitivity at 100 kbps. The energy consumption of the receiver and of the transmitter is respectively 0.144 nJ/bit and 196 pJ/bit at 100 Mbps. To improve the budget link of our non-coherent based transceiver a Randomly Alternate OOK signaling is proposed which leads to an estimated communication range of 2.36 m in a free space propagation channel.  相似文献   

3.
In the last years, a lot of attention has been devoted to both multi-antenna systems with space-time orthogonal block coding (STOBC) and ultra wideband (UWB) transceivers based on impulse-radio (IR) technologies. In this short contribution we anticipate the architecture of a novel transceiver merging both multi-antenna and pulse position modulation (PPM) IR-UWB techniques and then we test the performance in flat-faded application scenarios typical of emerging broadband 4G WLANs. Three main appealing features are retained by the sketched transceiver scheme. First, it allows to equip the UWB receiver with reliable estimates of the (possibly time-varying) underlying multiple-input multiple-output (MIMO) UWB without reducing the overall information throughput conveyed by the system. Second, the performance confirms that the proposed transceiver is able to achieve "full diversity" even at SNRs as low as 1.5-2 dB. As a consequence, the resulting BERs outperform those of current Single-Input Single-Output (SISO) IR-UWB transceivers over two orders of magnitude even at SNR's as low as 3-4 dB. Third, at target BER's below 10/sup -2/ and radiated powers around 250 /spl mu/W, the coverage ranges allowed by the proposed MIMO IR-UWB scheme typically outperform those of conventional SISO IR-UWB ones of about two orders of magnitude.  相似文献   

4.
Ultra-wideband (UWB) is a booming technology in the field of wireless communication. This paper presents a brief idea related to the various coherent and non-coherent IR-UWB detectors. Due to the limitation in transmit power spectral density of UWB system, the major challenges faced by UWB system includes, achieving Quality of Service, system performance and coverage area. So, the combination of UWB system with cooperative communication will not only improve the system performance, but also help in expanding coverage area of signals. A brief review of the work done by various researchers in the field of cooperative impulse radio (IR) UWB communication is also presented in this paper. The working principle and performance analysis of the various coherent and non-coherent IR-UWB detectors using cooperative relay strategies are also discussed at large in this paper. The various fixed cooperative relay strategies used for cooperative UWB communication is Amplify and Forward, Decode and Forward and Detect and Forward. From the simulation results it can be inferred that, even though IR-UWB DTR receiver gives a much better BER performance than IR-UWB ED receiver using both cooperative and non-cooperative strategies, yet ED receiver is preferred because of its less complexity and low power consumption. Future prospects in the field of cooperative IR-UWB communication have also been discussed in this paper.  相似文献   

5.
A self-duty-cycled non-coherent impulse radio-ultra wideband receiver targeted at low-power and low-data-rate applications is presented. The receiver is implemented in a 130 nm CMOS technology and works in the 7.2–8.5 GHz UWB band, which covers the IEEE 802.15.4a and 802.15.6 mandatories high-band channels. The receiver architecture is based on a non-coherent RF front-end (high gain LNA and pulse detector) followed by a synchronizer block (clock and data recovery or CDR function and window generation block), which enables to shut down the power-hungry LNA between pulses to strongly reduce the receiver power consumption. The main functions of the receiver, i.e. the RF front-end and the CDR block, were measured stand-alone. A maximum gain of 40 dB at 7.2 GHz is measured for the LNA. The RF front-end achieves a very low turn-on time (<1 ns) and an average sensitivity of ?92 dBm for a 10?3 BER at a 1 Mbps data rate. A root-mean-square (RMS) jitter of 7.9 ns is measured for the CDR for a power consumption of 54 µW. Simulation results of the fully integrated self-duty-cycled 7.2–8.5 GHz IR-UWB receiver (that includes the measured main functions) confirm the expected performances. The synchronizer block consumes only 125 µW and the power consumption of the whole receiver is 1.8 mW for a 3% power duty-cycle (on-window of 30 ns).  相似文献   

6.
In this paper, we describe an impulse-based ultra wideband (UWB) radio system for wireless sensor network (WSN) applications. Different architectures have been studied for base station and sensor nodes. The base station node uses coherent UWB architecture because of the high performance and good sensitivity requirements. However, to meet complexity, power and cost constraints, the sensor module uses a novel non-coherent architecture that can autonomously detect the UWB signals. The radio modules include a transceiver block, a baseband processing unit and a power management block. The transceiver block includes a Gaussian pulse generator, a multiplier, an integrator and timing circuits. For long range applications, a wideband low noise amplifier (LNA) is included in the transceiver of the sensor module, whereas in short range applications it is simply eliminated to further reduce the power consumption. In order to verify the proposed system concept, circuit level implementation is studied using 1.5 V 0.18 μm CMOS technology. Finally, the UWB radio modules have been designed for implementation in liquid-crystal-polymer (LCP) based System-on-Package (SoP) technology for low power, low cost and small size integration. A small low cost, double-slotted, Knight’s helm antenna is embedded in the LCP substrate, which shows stable characterization and a return loss better than ?10 dB over the UWB band.  相似文献   

7.
在60 GHz芯片间无线互连信道中存在着多径干扰问题,采用Rake接收是提高系统性能的重要手段。针对脉冲超宽带( IR-UWB)的芯片间无线互连系统,分析了多径信道下Rake接收机的误码性能。在IEEE 802.15.3 c信道模型基础上,对不同分支数以及不同合并方案下的选择Rake ( S-Rake)和部分Rake(P-Rake)接收机误码性能进行了研究。仿真结果表明采用支路数为2的P-Rake在数据速率为10 Gb/s时仍具有良好的抗多径性能,这为芯片间无线互连系统的Rake接收方案提供了技术参考。  相似文献   

8.
Ultra-wideband (UWB) planar antennas with single or multiple notched frequency bands properties have recently been considered for various communications between wireless devices. In this study, a low profile microstrip monopole antenna with double band-filtering function is designed and investigated. FR-4 dielectric with properties of ε = 4.4 and δ = 0.02 has been employed as the antenna substrate. The configuration of the proposed design is composed of a modified fork-shaped radiating patch with inverted Ω-shaped slot and a pair of coupled Γ-shaped parasitic structures, a feed-line and a ground plane. The proposed dual band-notched UWB antenna provides good impedance bandwidth characteristic from 2.89 to 12.43 GHz for VSWR <2 with two notched bands which cover all the 5.2/5.8 GHz of WLAN, 3.5/5.5 GHz of WiMAX and 4-GHz of C bands ranges. The antenna provides good radiation behavior with sufficient gain levels over its operation frequency band.  相似文献   

9.
The recent developments in radio technologies, paves its way to impulse radio (IR) ultra-wideband (UWB) communication, which is used for low power, short range and high bandwidth communication, thereby exploiting a large portion of radio spectrum. In this paper, a brief review of the work done by various researchers on coherent and non-coherent IR-UWB receivers has been analysed, based on their bit error rate (BER) performances, as well as pros and cons of using these receivers. An in depth study on the receivers concludes that, non-coherent IR-UWB receiver is preferred over its counterpart coherent IR-UWB receiver even though it comes at the expense of poor BER performance. The simulation results prove that, though the performances are same, the low complexity of energy detector (ED) receivers gives an edge over the autocorrelation receivers. Further, ED receiver suffers from noise, which paves way to using weighted ED (WED) receiver. The superiority of WED receivers over all the other non-coherent UWB receivers is further confirmed by the simulation performed in AWGN and IEEE 802.15.4a UWB channels. It can also be concluded from the review that, some special receivers such as generalized likelihood ratio test, multi-symbol differential detector and decision feedback differential transmitted reference, when clubbed with UWB systems, lead to further improvement in BER performance.  相似文献   

10.
11.
In this paper, a co-design methodology and the effect of antenna miniaturization in an impulse UWB system/transceiver is presented. Modified small-size printed tapered monopole antennas (PTMA) are designed in different scaling sizes. In order to evaluate the performance and functionality of these antennas, the effect of each antenna is studied in a given impulse UWB system. The UWB system includes an impulse UWB transmitter and two kinds of UWB receivers are considered, one based on correlation detection and one on energy detection schemes. A tunable low-power Impulse UWB transmitter is designed and the benefit of co-designing it with the PTMA antenna is investigated for the 3.1–10.6 GHz band. A comparison is given between a 50 $\Omega $ design and a co-designed version. Our antenna/transceiver co-design methodology shows improvement in both transmitter efficiency and whole system performance. The simulation results show that the PTMA antenna and its miniaturized geometries are suitable for UWB applications.  相似文献   

12.
The ultra-wide bandwidth released for unlicensed use by FCC a decade ago has initiated significant research efforts. The large ultra-wide bandwidth is attractive not only for increased data transfer speed but may also be exploited for added functionality like high-precision ranging in wireless sensor networks. RAKE based receivers are preferred for ultra-wideband (UWB) technology due to wide bandwidth. However, designing RAKE based correlating receivers remains quite challenging. Correlating receivers are also power consuming due to high-speed DSPs, ADC and matched filter. Timing synchronization is another issue associated with correlating receivers. In this paper a impulse radio ultra-wideband (IR-UWB) RAKE receiver is presented utilizing a continuous-time binary value coding scheme for power-efficiency and coherent symbol detection without the need for synchronization to achieve precise ranging using time-of-flight technique. A working prototype of the IR ranging transceiver which uses the IR-UWB RAKE receiver is presented with measured high-precision ranging towards 1.4 cm.  相似文献   

13.
This paper presents an interference rejection full-band UWB receiver and fast hopping carrier generator for 3.1–10.6 GHz. This receiver enables 11 bands of operation by embedding a tunable notch filter to eliminate interferers in a 5 GHz wireless local area network. The carrier generator can cover 3.1–10.6 GHz within less than 9.5 ns. The receiver, based on the proposed multi-band OFDM standard, consists of a zero-IF receive chain and required system noise figure, the receiver linearity specifications of which are discussed in this paper. It consists of a single-ended low-noise amplifier (LNA), a down-conversion mixer, a low-pass filter (LPF), and a programmable gain amplifier with an IO buffer. The LNA employs a common-gate topology of the 1st stage with dual-resonant loads, a cascade amplifier of the 2nd stage for mid-band resonance, and a tunable notch filter. The down-conversion mixer adopts a single-balanced architecture with LO cancellation. The LPF is implemented based on an active RC topology, and implements a four-stage programmable gain amplifier. The receiver dissipates 49.3 mA from a 1.8 V power supply. The average voltage conversion gain of the receiver IC is 73.5 dB, and the system noise figure is 8.4 dB. Input P1dB increases from ?36.8 dBm at 4 GHz to ?30.5 dBm at 10.3 GHz. The attenuation is 8.5 dB, which is achieved in the interference rejection band at 5.2 GHz. It occupies an area of 0.98 × 3.3 mm2 including the bond pads.  相似文献   

14.
针对脉冲超宽带通信技术采用的调制方式,对其的误比特率性能进行理论分析。结论指出,对于脉冲超宽带常用的两种调制方式PAM和PPM,PAM的误比特性能具有3dB增益;且充分利用FCC功率限制之下的能量是提升超宽带无线通信误比特性能的关键。  相似文献   

15.
This paper presents a novel CMOS impulse radio (IR) ultra-wide-band (UWB) transceiver system design for future contact-less chip testing applications using inductive magnetic coupling as wireless interconnect. The proposed architecture is composed of a simple and robust design of a Gaussian monocycle impulse generator at the transmitter, a wideband short-range on-chip transformer for data transmission, and a gm-boosted common-gate low-noise amplifier in the UWB receiver path. SpectreRF post-layout simulation with a 90-nm CMOS technology shows that the transceiver operates up to a 5 Gb/s data rate, and consumes a total of 9 mW under a 1-V power supply.  相似文献   

16.
This paper presents bit error rate (BER) analysis of wireless sensor networks (WSNs) consisting of sensor nodes based on an IEEE 802.15.4 RF transceiver. Closed-form expressions for BER are obtained for WSNs operating over AWGN, Rayleigh and Nakagami-m fading channels. For the purpose of analysis, we consider an IEEE 802.15.4 RF transceiver using direct sequence spread spectrum-offset quadrature phase shift keying (DSSS-OQPSK) modulation under 2.4 GHz frequency band in a WSN. Analytical expressions for BER are derived for a wireless link between sensor nodes that act as a transmitter unit and a base station without considering the effect of interferers in the wireless environment. Numerical results for BER are obtained by varying the IEEE 802.15.4 standard specific physical layer parameters, such as number of bits used to represent a Zigbee symbol, number of modulation levels used in an OQPSK modulator, and various values of Rayleigh and Nakagami-m fading parameters, denoted as \(\alpha \) and \(m\) , respectively. Moreover, optimum values of physical layer parameters are identified for improved system performance. It is found that error performance analysis of WSN shows improvement when lower number of bits is used to represent a Zigbee symbol. Specifically, under a Rayleigh fading channel which reflects a real-time WSN environment, the network exhibits better performance only when it is operated at high SNR values, i.e., BER of order \(10^{-2}\) is achieved when SNR lies in the range 5–15 dB. Also, the effect of fading parameters on network performance shows that better results are obtained for higher values of \(\alpha \) and \(m\) for Rayleigh and Nakagami-m fading channels, respectively.  相似文献   

17.
Ultra wideband radio (UWB) is a new wireless technology that uses narrow pulses to transmit information. Implementing an “all-digital” UWB receiver has numerous potential benefits ranging from low-cost and ease-of-design to flexibility. Digitizing an RF signal near the antenna, however, introduces its own set of challenges and has traditionally been considered infeasible. A high-speed, high-resolution analog-digital converter (ADC) is difficult to design, and is extremely power-hungry. The viability of an “all-digital” architecture, therefore, hinges upon the specifications of this block. In this paper, we demonstrate that 4 bits of resolution are sufficient for reliable detection of a typical UWB signal that is swamped in noise and interference.  相似文献   

18.
With quad-notched band characteristic, a compact ultra-wideband (UWB) multiple-input-multiple-output antenna is proposed in the article. There are two identical monopole elements in the system. By inserting symmetrical L-shaped slots, complementary split-ring resonators) and C-shaped stubs in each element, four notched bands are achieved to filter 3.5 GHz WiMAX, 5.25 GHz lower WLAN, 5.8 GHz upper WLAN, and 7.5 GHz X-band. Without decoupling structures, the antennas were placed vertically to obtain high isolation. Results indicate that the antenna operates from 2.6 to 13 GHz except four rejected bands, and port isolation (S21) is better than ?25 dB, envelope correlation coefficient is below 0.002 in UWB spectrum frequency of 3.1–10.6 GHz.  相似文献   

19.
This article deals with a new energy based adaptive timing synchronization scheme (ATS) which estimates the symbol timing information within two (2) OFDM symbols and updates the information with different frequency bands (adaptive in sense) in a multi-band orthogonal frequency division multiplexing (MB-OFDM) based system. The new approach provides significant improvement in system performance for high delay spread ultra-wideband (UWB) channel model (CM) environments where fast and low-complexity timing synchronization is a critical issue. This paper also addresses a crucial aspect of UWB channel which is frequency dependent delay characteristics. This effect contributes to different dispersion and timing shift of an UWB signal for different frequency bands. In this work, the wideband channel delay characteristics are studied and delay parameters are found considerably different over frequency bands 3.1–4.6 GHz. Based on this observation, the ATS which estimates and maintains the timing delays of each band separately is presented. The performance of ATS algorithm is measured by mean-squared error (MSE), synchronization probability, signal to interference ratio (SIR) reduction due to synchronization errors and bit error rate (BER) through the computer simulation for several UWB CM environments CM2–CM4. Each of these UWB CMs is simulated for 100,000 noisy channel realizations for both coded and uncoded MB-OFDM system. It is shown that ATS gives signal-to-noise ratio (SNR) improvement of 1.1 dB at BER of 1 × 10−3, 1.2 dB at BER of 2 × 10−4, and 0.7 dB at BER of 2 × 10−4 for CM4, CM3, and CM2 respectively for coded MB-OFDM system over a non-adaptive synchronization scheme [Yak et al., Proceedings of IEEE PIMRC, Berlin, Germany, vol 1, pp 471–475, September 11–14, 2005].  相似文献   

20.
Dual-frequency operation of antenna has become a necessity for many applications in recent wireless communication systems, such as GPS, GSM services each operating at two different frequency bands. A new technique to achieve dual band operation from different types of microstrip antennas is presented here. An evolutionary design process using a particle swarm optimization (PSO) algorithm in conjunction with the method of moments (MoM) is employed effectively to obtain the geometric parameters of the antenna performance. In this article a PSO based on IE3D®? method is used to design dual band inset feed microstrip antenna. Maximum return loss is obtained at 2.4 GHz is ?43.95 dB and at 3.08 GHz is ?27.4 dB. Its bandwidth, of 33.54 MHz, ranges from 2.38355 GHz to 2.41709 GHz. Simulated and experimental results of the antenna are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号