首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an analytical and numerical study on the heat transfer characteristics of forced convection across a microchannel heat sink. Two analytical approaches are used: the porous medium model and the fin approach. In the porous medium approach, the modified Darcy equation for the fluid and the two-equation model for heat transfer between the solid and fluid phases are employed. Firstly, the effects of channel aspect ratio (αs) and effective thermal conductivity ratio (k?) on the overall Nusselt number of the heat sink are studied in detail. The predictions from the two approaches both show that the overall Nusselt number (Nu) increases as αs is increased and decreases with increasing k?. However, the results also reveal that there exists significant difference between the two approaches for both the temperature distributions and overall Nusselt numbers, and the discrepancy becomes larger as either αs or k? is increased. It is suggested that this discrepancy can be attributed to the indispensable assumption of uniform fluid temperature in the direction normal to the coolant flow invoked in the fin approach. The effect of porosity (ε) on the thermal performance of the microchannel is subsequently examined. It is found that whereas the porous medium model predicts the existence of an optimal porosity for the microchannel heat sink, the fin approach predicts that the heat transfer capability of the heat sink increases monotonically with the porosity. The effect of turbulent heat transfer within the microchannel is next studied, and it is found that turbulent heat transfer results in a decreased optimal porosity in comparison with that for the laminar flow. A new concept of microchannel cooling in combination with microheat pipes is proposed, and the enhancement in heat transfer due to the heat pipes is estimated. Finally, two-dimensional numerical calculations are conducted for both constant heat flux and constant wall temperature conditions to check the accuracy of analytical solutions and to examine the effect of different boundary conditions on the overall heat transfer.  相似文献   

2.
Experiments are carried out on natural convection heat transfer from square pin fin heat sinks subject to the influence of orientation. A flat plate and seven square pin fin heat sinks with various arrangements are tested under a controlled environment. Test results indicate that the downward facing orientation yields the lowest heat transfer coefficient. However, the heat transfer coefficients for upward and sideward facing orientations are of comparable magnitude. Depending on the fin structure, the performance of these two orientations shows a competitive nature. It is found that the sideward arrangement outperforms the upward one for small finning factors below 2.7, beyond which the situation is reversed. In addition, with the gradual increase in the finning factor, the performance of sideward arrangement approaches that of downward arrangement. Aside from the finning factor, the heat sink porosity has a secondary effect on the pin fin performance. The comparison among three orientations shifts in favour of upward and sideward arrangements with raising the heat sink porosity in consequence of reducing the flow resistance. The optimal heat sink porosity is around 83% for the upward arrangement and is around 91% for the sideward arrangement. In particular, the addition of surface is comparatively more effective for the downward arrangement whereas it is less effective for the sideward arrangement. This argument is supported by showing that the augmentation factor, defined as the heat transfer of a heat sink relative to that of a flat plate, is around 1.1–2.5 for the upward arrangement, around 0.8–1.8 for the sideward arrangement, and around 1.2–3.2 for the downward arrangement.  相似文献   

3.
The present study applies the inverse method in conjunction with the experimental temperature data to investigate the accuracy of the heat transfer coefficient on the fin in the plate-fin heat sink for various fin spacings. The commercial software is applied to solve the governing differential equations with the RNG k? model in order to obtain the heat transfer and fluid flow characteristics. Under the assumption of the non-uniform heat transfer coefficient, the entire fin is divided into several sub-fin regions before performing the inverse scheme. The average heat transfer coefficient in each sub-fin region is assumed to be unknown. Later, the present inverse scheme in conjunction with the experimental temperature data is applied to determine the heat transfer coefficient and fin efficiency. In order to determine a more reliable heat transfer coefficient, a comparison between the present inverse and numerical results and those obtained from the existing correlations will be made. The numerical fin temperatures will also be compared with the experimental data.  相似文献   

4.
This paper numerically and experimentally investigated the liquid cooling efficiency of heat sinks containing micro pin fins. Aluminum prototypes of heat sink with micro pin fin were fabricated to explore the flow and thermal performance. The main geometry parameters included the diameter of micro pin fin and porosity of fin array. The effects of the geometrical parameters and pressure drop on the heat transfer performance of the heat sink were studied. In the experiments, the heat flux from base of heat sink was set as 300 kW/m2. The pressure drop between the inlet and the outlet of heat sink was set < 3000 Pa. Numerical simulations with similar flow and thermal conditions were conducted to estimate the flow patterns, the effective thermal resistance. It was found that the effective thermal resistance would reach an optimum value for various pressure drops. It was also noted that the effective thermal resistance was not sensitive to porosity for sparsely packed pin fins.  相似文献   

5.
The transient heat transfer in a heat‐generating fin with simultaneous surface convection and radiation is studied numerically for a step change in base temperature. The convection heat transfer coefficient is assumed to be a power law function of the local temperature difference between the fin and its surrounding fluid. The values of the power exponent n are chosen to include simulation of natural convection (laminar and turbulent) and nucleate boiling among other convective heat transfer modes. The fin is assumed to have uniform internal heat generation. The transient response of the fin depends on the convection‐conduction parameter, radiation‐conduction parameter, heat generation parameter, power exponent, and the dimensionless sink temperature. The instantaneous heat transfer characteristics such as the base heat transfer, surface heat loss, and energy stored are reported for a range of values of these parameters. When the internal heat generation exceeds a threshold the fin acts as a heat sink instead of a heat source. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21012  相似文献   

6.
This paper presents an analysis of forced convection heat transfer in microchannel heat sinks for electronic system cooling. In view of the small dimensions of the microstructures, the microchannel is modeled as a fluid-saturated porous medium. Numerical solutions are obtained based on the Forchheimer–Brinkman-extended Darcy equation for the fluid flow and the two-equation model for heat transfer between the solid and fluid phases. The velocity field in the microchannel is first solved by a finite-difference scheme, and then the energy equations governing the solid and fluid phases are solved simultaneously for the temperature distributions. Also, analytical expressions for the velocity and temperature profiles are presented for a simpler flow model, i.e., the Brinkman-extended Darcy model. This work attempts to perform a systematic study on the effects of major parameters on the flow and heat transfer characteristics of forced convection in the microchannel heat sink. The governing parameters of engineering importance include the channel aspect ratio (αs), inertial force parameter (Γ), porosity (ε), and the effective thermal conductivity ratio (kr). The velocity profiles of the fluid in the microchannel, the temperature distributions of the solid and fluid phases, and the overall Nusselt number are illustrated for various values of the problem parameters. It is found that the fluid inertia force alters noticeably the dimensionless velocity distribution and the fluid temperature distribution, while the solid temperature distribution is almost insensitive to the fluid inertia. Moreover, the overall Nusselt number increases with increasing the values of αs and ε, while it decreases with increasing kr.  相似文献   

7.
In the present study, compact water cooling of high‐density, high‐speed, very‐large‐scale integrated (VLSI) circuits with the help of microchannel heat exchangers were investigated analytically. This study also presents the result of mathematical analysis based on the modified Bessel function of laminar fluid flow and heat transfer through combined conduction and convection in a microchannel heat sink with triangular extensions. The main purpose of this paper is to find the dimensions of a heat sink that give the least thermal resistance between the fluid and the heat sink, and the results are compared with that of rectangular fins. It is seen that the triangular heat sink requires less substrate material as compared to rectangular fins, and the heat transfer rate per unit volume has been almost doubled by using triangular heat sinks. It is also found that the effectiveness of the triangular fin is higher than that of the rectangular fin. Therefore, the triangular heat sink has the ability to dissipate large amounts of heat with relatively less temperature rise for the same fin volume. Alternatively, triangular heat sinks may thus be more cost effective to use for cooling ultra‐high speed VLSI circuits than rectangular heat sinks.  相似文献   

8.
In this study, the three-dimensional fluid flow and heat transfer in a rectangular micro-channel heat sink are analyzed numerically using water as the cooling fluid. The heat sink consists of a 1-cm2 silicon wafer. The micro-channels have a width of 57 μm and a depth of 180 μm, and are separated by a 43 μm wall. A numerical code based on the finite difference method and the SIMPLE algorithm is developed to solve the governing equations. The code is carefully validated by comparing the predictions with analytical solutions and available experimental data. For the micro-channel heat sink investigated, it is found that the temperature rise along the flow direction in the solid and fluid regions can be approximated as linear. The highest temperature is encountered at the heated base surface of the heat sink immediately above the channel outlet. The heat flux and Nusselt number have much higher values near the channel inlet and vary around the channel periphery, approaching zero in the corners. Flow Reynolds number affects the length of the flow developing region. For a relatively high Reynolds number of 1400, fully developed flow may not be achieved inside the heat sink. Increasing the thermal conductivity of the solid substrate reduces the temperature at the heated base surface of the heat sink, especially near the channel outlet. Although the classical fin analysis method provides a simplified means to modeling heat transfer in micro-channel heat sinks, some key assumptions introduced in the fin method deviate significantly from the real situation, which may compromise the accuracy of this method.  相似文献   

9.
In this study, a comparative study of heat sink having various fin assembly under natural convection is investigated. The fin pattern includes a rectangular, a trapezoidal and an inverted trapezoidal configuration. Tests were performed in a well controlled environmental chamber having a heat load ranging from 3 to 20 W. From the test results, the heat transfer coefficient of the conventional rectangular fins is higher than that of the trapezoidal fins while the heat transfer coefficient of the inverted trapezoidal fins is higher than the trapezoidal one by approximately 25%, and it exceeds that of convectional rectangular fin by about 10%. The heat transfer improvements of the inverted trapezoidal fin are mainly associated with a larger temperature difference and inducing more air flow into the heat sink.  相似文献   

10.
Experiments were performed on natural convection heat transfer from circular pin fin heat sinks subject to the influence of its geometry, heat flux and orientation. The geometric dependence of heat dissipation from heat sinks of widely spaced solid and hollow/perforated circular pin fins with staggered combination, fitted into a heated base of fixed area is discussed. Over the tested range of Rayleigh number, 3.8 × 106 ≤ Ra ≤ 1.65 × 107, it was found that the solid pin fin heat sink performance for upward and sideward orientations shows a competitive nature, depending on Rayleigh number and generally shows higher heat transfer coefficients than those of the perforated/hollow pin fin ones in both arrangement. For all tested hollow/perforated pin fin heat sinks, however, the performance for sideward facing orientation was better than that for upward facing orientation. This argument is supported by observing that the augmentation factor was around 1.051.11, depending on the hollow pin diameter ratio, Di/Do. Meanwhile, the heat sink of larger hollow pin diameter ratio, Di/Do offered higher heat transfer coefficient than that of smaller Di/Do for upward orientation, and the situation was reversed for sideward orientation. The heat transfer performance for heat sinks with hollow/perforated pin fins was better than that of solid pins. The temperature difference between the base plate and surrounding air of these heat sinks was less than that of solid pin one and improved with increasing Di/Do.  相似文献   

11.
In this study, fluid flow and heat transfer in microchannel heat sinks are numerically investigated. The three-dimensional governing equations for both fluid flow and heat transfer are solved using the finite-volume scheme. The computational domain is taken as the entire heat sink including the inlet/outlet ports, inlet/outlet plenums, and microchannels. The particular focus of this study is the inlet/outlet arrangement effects on the fluid flow and heat transfer inside the heat sinks.The microchannel heat sinks with various inlet/outlet arrangements are investigated in this study. All of the geometric dimensions of these heat sinks are the same except the inlet/outlet locations. Because of the difference in inlet/outlet arrangements, the resultant flow fields and temperature distributions inside these heat sinks are also different under a given pressure drop across the heat sink. Using the averaged velocities and fluid temperatures in each channel to quantify the fluid flow and temperature maldistributions, it is found that better uniformities in velocity and temperature can be found in the heat sinks having coolant supply and collection vertically via inlet/outlet ports opened on the heat sink cover plate. Using the thermal resistance, overall heat transfer coefficient and pressure drop coefficient to quantify the heat sink performance, it is also found these heat sinks have better performance among the heat sinks studied. Based on the results from this study, it is suggested that better heat sink performance can be achieved when the coolant is supplied and collected vertically.  相似文献   

12.
The characteristics of heat exchangers with offset-type plate fins for space stations are studied for Reynolds numbers less than 300 based on the hydraulic diameter. A three-dimensional analysis is carried out to study the effects of the following parameters on the heat transfer and the flow characteristics: (a) the thermal boundary layer developing on the bottom plate and on the fins on the plate, (b) the aspect ratio (height/pitch) of the cross section of the flow passage, the fin thickness, the fin length in the direction of the flow, the thermal conductivity of the fluid and the fins, and the Prandtl number of the fluid. The results obtained are as follows. (1) The heat-transfer coefficient on the fin surface is characterized by the thermal-conductivity ratio of fluid to fin material. When the thermal conductivity of the fin material approaches that of the fluid, the heat-transfer coefficient on the fin surface becomes low. (2) The optimum condition of the aspect ratio depends on the value of the thermal-conductivity ratio between the fluid and the fins. (3) When the aspect ratio becomes large or small, the friction factor of offset fins approaches that of fully developed duct flow with the same aspect ratio as the Reynolds number decreases. © 1998 Scripta Technica. Heat Trans Jpn Res, 26(4): 249–261, 1997  相似文献   

13.
纪律  李斌 《节能》2010,29(11):29-32
同时对普通翅片管和带有两个短肋的翅片管在均匀流场中、不同雷诺数下进行了流场和传热的数值模拟,分析了带有短肋的翅片管强化传热的机理。结果表明,由于翅片上带有的短肋和短肋后面的开孔,减少了翅片管管后流动的死滞区,提高了局部地区流体的流速,增加了扰动,从而起到了强化传热的作用。取入口雷诺数为20000时,加装短肋后可使总传热量增加5.1%,平均表面传热系数增加23.56%。随着雷诺数的增加,总换热量增加,强化传热效果也增强。  相似文献   

14.
Thermoelectric air‐conditioners (TEACs) are becoming much concerned due to their many advantages, but the low COPs limit their broad applications. The two key factors to raise the COPs of TEACs are both the improvement of thermoelectric materials and the optimum design of hot side heat sinks. This paper provides a thermoelectric air‐conditioning system with a water‐cooled sleeve heat sink in the hot side of the thermoelectric pellets, and compares the overall heat transfer rates qt, the total heat resistances Rt between the water‐cooled and air‐cooled heat sinks as well as the optimum fin length, the optimum fluid flow velocity and the optimum fin gap distance. The simulation results show that the overall heat transfer rate of water‐cooled heat sink is more than 20 times that of air‐cooled heat sink under the other same circumstances, as a result of the improvement of heat sink, the optimum COP of the thermoelectric air‐conditioning system with the water‐cooled heat sink proximately doubles that with the air‐cooled heat sink. This novel system could be simply installed and applied all the year round for cooling in summer and heating in winter. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
We investigated natural convection heat transfer around a radial heat sink adapted for dissipating heat on a circular LED (light emitting diode) light and optimized heat sink. The numerical results were validated with experimental results and it showed a good agreement. To select the optimum reference model, three types of heat sinks (L, LM and LMS model) were compared. Parametric studies were performed to compare the effects of the number of fins, long fin length, middle fin length and heat flux on the thermal resistance and average heat transfer coefficient. Finally, multi-objective optimizations considering thermal performance and mass simultaneously were performed and Pareto front were conducted with various weighting factors. It was found that it was impossible to optimize both thermal performance and heat sink mass at the same time, and there existed an upper limit to the ratio of weighting factors (ω12).  相似文献   

16.
This paper describes experimental and theoretical investigations of heat sinks with different base plate material mounted on CPUs. The thermal model of the computer system with heat sinks which is created using Gambit (for preprocessing) and the simulation is carried out using Fluent (for solver execution and post processing). The following parameters are considered: fin thickness, fin height, and number of fins. Primarily in this paper different base plate thickness and base plate materials are optimized for maintaining the cost and thermal performance of a heat sink. In this research work, the thermal model of the computer system with a slot parallel plate fin heat sink design has been selected, and the fluid flow and thermal flow characteristics of heat sinks are studied. The slot parallel plate fin heat sinks have been used with copper base plates and carbon carbon composite (CCC) base plates to enhance the heat dissipation. The results and conclusion obtained in this present work are found to be in good agreement with numerical results. A complete computer chassis with slot parallel plate heat sinks is investigated varying the thickness of base plate, and the performances of the heat sinks are compared. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20342  相似文献   

17.
A conjugate mixed convection heat transfer problem of a second-grade viscoelastic fluid past a horizontal flat-plate fin has been studied. Governing equations include heat conduction equation of the fin, and continuity equation, momentum equation and energy equation of the fluid, have been analyzed by a combination of a series expansion method, the similarity transformation and a second-order accurate finite difference method. Solutions of a stagnation flow (β = 1.0) at the fin tip and a flat-plate flow (β = 0) on the fin surface were obtained by a generalized Falkner–Skan flow derivation. These solutions have been used to iterate with the heat conduction equation of the fin to obtain distributions of the local convective heat transfer coefficient and the fin temperature. Ranges of dimensionless parameters, the Prandtl number (Pr), the elastic number (E), the free convection parameter (G) and the conduction–convection coefficient (Ncc) are from 0.1 to 100, 0.001 to 0.01, 0 to 1.5 and 0.05 to 2.0, respectively. The elastic effect in the flow could increase the local heat transfer coefficient and enhance the heat transfer of a horizontal flat-plate fin. In addition, same as results from Newtonian fluid flow and conduction analysis of a horizontal flat-plate fin, a better heat transfer has been obtained with a larger Ncc, G and Pr.  相似文献   

18.
The effect of geometrical parameters on water flow and heat transfer characteristics in microchannels is numerically investigated for Reynolds number range of 100–1000. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using finite volume method. The computational domain is taken as the entire heat sink including the inlet/outlet ports, wall plenums, and microchannels. Three different shapes of microchannel heat sinks are investigated in this study which are rectangular, trapezoidal, and triangular. The water flow field and heat transfer phenomena inside each shape of heated microchannels are examined with three different geometrical dimensions. Using the averaged fluid temperature and heat transfer coefficient in each shape of the heat sink to quantify the fluid flow and temperature distributions, it is found that better uniformities in heat transfer coefficient and temperature can be obtained in heat sinks having the smallest hydraulic diameter. It is also inferred that the heat sink having the smallest hydraulic diameter has better performance in terms of pressure drop and friction factor among other heat sinks studied.  相似文献   

19.
High-performance and very compact heat sinks have been developed for effective cooling of VLSIs with high heat-generation densities. Their heat transfer and pressure loss characteristics in air-jet cooling have been experimentally studied. The highly compact heat sinks were plate-fin arrays with a very small fin pitch of 0.4–2.0 mm. The rectangular jet nozzle width that gave the highest cooling performance was 30 to 40% of the streamwise length of the heat sinks. The influence of fin height on heat transfer became weak when the ratio of the height to the thickness of the fin exceeded approximately 35. When the air flow rate was constant, the thermal conductance increased as the fin pitch decreased. For a constant fin pitch, heat sinks with smaller fin thickness showed larger thermal conductance at a given blower power consumption. In our experimental range, the heat dissipation rate per unit heat sink volume increased as the base plate area of the heat sink became small. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(6): 399–414, 1998  相似文献   

20.
This study explores the prediction of temperature distribution in a heat sink containing an array of circular micro-channels, which is found mostly in electronic cooling applications. The analytical heat diffusion models for most common micro-channel shapes are based on one-dimensional fin models with varying degrees of complexity. Because of a singularity in the governing one-dimensional heat diffusion equation for a fin with circular profile, no exact solution is possible for the circular heat sink geometry. In this paper, an alternative analytical power series solution technique is presented in which the differential equation is recast in polynomial form. Predictions of the power series solution are validated for different channel diameters and spacings and both one-sided and two-sided heating conditions using one-dimensional and two-dimensional numerical simulations. Overall, maximum percent differences in temperature and heat transfer rate between the analytical and two-dimensional numerical results of 0.23% and 1.33%, respectively, prove that the present analytical models are very accurate and effective tools for the design and thermal resistance prediction of micro-channel heat sinks found in electronic cooling applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号