首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid heating in an injection molding cycle has the advantage of improving product quality without significant increase in cycle time. In this study, high-frequency proximity effect induced heating (HFPEIH) was developed and combined with water cooling to achieve dynamic mold surface temperature control. By applying the HFPEIH system on a pair of mold plates separated with a small gap, the relevant influence of HFPEIH design was evaluated under various parameters including different mold plate material, inductor designs, and inductor channel depths beneath mold surface as well as mold separations. Simulation was also conducted and verified with experiments. Results show that all the heating rates range within 2 °C/s to 4 °C/s for the mold plate size of 100 mm by 100 mm. For the inductor design with three channels of circular cross section, the heating rate is fastest whereas one inductor design of rectangular shape exhibits the best the uniformity of temperature distribution. When the channel depth is reduced from 12 mm to 4 mm, the heating rate is increased significantly. The heating rate is also sensitive to mold plate surface area. When stainless steel N700 was used as the plate materials in a smaller plate of 60 mm by 60 mm, the heating rate can reach 7.6 °C/s using one channel inductor design. The mold separation exhibits that it is less sensitive to the heating rate within 1 mm to 5 mm range and when it is greater than 5 mm, the heating rate starts to decrease slightly. All the simulated results show good coincidence with experimental measurements.  相似文献   

2.
A rapid heating cycle has the advantage of improving product quality in injection molding. In this study, gas-assisted mold temperature control (GMTC) was combined with cool water to achieve dynamic mold surface temperature control. By applying the GMTC system on the mold of a rectangular plate, the advantages of using GMTC for injection molding were evaluated and compared with the traditional injection molding process using different gas gap sizes and gas flow capacities. The effect of GMTC on the quality of the part was also studied. Results showed that when GMTC was used, the heating rate can reach 28 °C/s. For an initial mold temperature of 60 °C, and an air gap size of 8 mm, after 6 s heating, the mold surface temperature can reach 147.8 °C, 167.2 °C, and 229 °C with gas flow capacities of 100, 200, and 300 l/min, respectively. When the gas gap size is changed from 4 mm to 8 mm, the uniformity of temperature distribution shows a clear improvement. When GMTC was used for injection molding of parts with fiber additives, the part surface was clearly improved.  相似文献   

3.
The rapid heating cycle has the advantage of improving product quality in injection molding. In this study, steam heating was combined with cool water on the same mold design to achieve dynamic mold surface temperature to establish control. By applying the steam system on a TV housing mold, the advantage of using steam heating for injection molding was then evaluated and compared with water heating by experiment and simulation. The effect of steam on the quality of the part was also studied. Results showed that as steam was used, the heating time of the simple mold plate can be reduced from 18 s to 8 s with the heating rate of 9 °C/s, and the cooling time is reduced over water heating. When the target temperature is changed from 70 °C to 110 °C, the heating time of the TV housing mold plate varies from 7 s to 19 s. For the product quality, steam heating showed an improvement in both the gloss and hardness of the TV housing.  相似文献   

4.
Setting high mold temperatures for injection-molding plastics facilitates favorable flow conditions for filling cavities with melted materials and provides an esthetically pleasing surface as well as a high replication rate of high-quality products; however, the cooling times are typically prolonged. Electromagnetic induction heating incorporating surface heating instead of conventional volume heating for mold-heating processes is advantageous because it provides a rapid heating time and a reduced cooling time, is environmentally friendly, and saves energy; therefore, it has been adopted in various variotherm injection-molding systems. Although previous studies have discussed how induction heating is influenced by major factors, such as the number of coil turns, working frequency, and heating distance, few studies have investigated other crucial factors, such as the thickness of the heated target and the position of the induction coil. In this study, the effects of the thickness of a heated target, pitch of coil turns, heating distance, position of the induction coil, working frequency, and waiting time on the heating rate and temperature uniformity of induction heating on a mold surface by using a single-layered coil were analyzed. In addition, the Taguchi method and principal component analysis were applied to determine the optimal combination of control factors for achieving a high heating rate and low temperature deviation. Both simulation and experimental results indicated that the thickness of a heated target plays a crucial role in affecting the heating rate; specifically, a thicker workpiece slows the heating process and generates rapid heat dissipation after induction heating. Moreover, the position of the induction coil exerts the most notable effect on heating uniformity.  相似文献   

5.
介绍了高强度鱼尾螺栓锻造加热时所用感应器的设计。本感应器为缝隙式,使用频率2500Hz,功率200kW、9匝。进行感应器的电计算时,采用了一种近似方法。试验结果表明,计算与实际调试结果基本符合,满足了螺栓联合自动机对加热节拍的要求,大幅度提高了生产效率。  相似文献   

6.
In-mold decoration (IMD) during injection molding is a relatively new injection molding technique and has been employed for plastic products to improve surface quality and achieving colorful surface design, etc. During IMD processing, the film is preformed as the shape of mold cavity and attached to one side of the mold wall (usually cavity surface), then molten polymer is filled into the cavity. Heat transfer toward the mold cavity side during molding IMD part is significantly retarded because the film is much less thermal conductive than metal mold. To investigate the effect of film on temperature field, polycarbonate (PC) was injection molded under various conditions including coolant temperature, melt temperature, film material and film thickness. Simulations were also conducted to evaluate the melt–film interface temperature and its influence from film initial temperature and film thermal properties. For PC film, it was found that the heat transfer retardation results in the mold temperature drop in cavity surface and the maximum temperature drop as compared to that of conventional injection molding without film may be as high as 17.7 °C. For PET film, this maximum mold temperature drop is about 13 °C. As PC film thickness increases, the retardation-induced mold temperature difference also increases. The initial film temperature (30 °C and 95 °C) may affect the melt–film interface temperature at the contact instant of melt and film by about 12 °C to 17 °C. When thermal conductivity of film increases from 0.1 W/(m–k) to 0.2 W/(m–k), melt–film interface temperature may vary by 22.9 °C. The simulated mold temperature field showed reasonable agreement with experimental results.  相似文献   

7.
Dynamic mold surface temperature control has the advantage of improving molded part qualities without significant increases in cycle time. In this study, a gas-assisted heating system combined with water cooling and different mold designs to achieve dynamic mold surface temperature control was established. The feasibility of using gas-assisted heating for mold surface temperature control during the injection molding process was then evaluated from experimental results. The effect of mold design as well as heating conditions including hot gas temperature, gas flow capacity, and heating time on the heating efficiency and the distribution uniformity of mold surface temperature were also studied. Results showed that as hot gas temperature and gas flow capacity increased, as well as increasing heating times from 2 s to 4 s, mold surface temperature increased significantly. Fan shaped gas channel design exhibits better mold surface temperature distribution uniformity than tube shaped gas channel design. During gas-assisted heating/cooling, it takes 2 s to increase mold surface temperature from 60 °C to 120 °C and 34 s for mold surface to return to 60 °C. In addition, under specified heating conditions and using the best composite mold designs, the heating rate can reach up to 30 °C/s, a rate well-suited to industrial applications.  相似文献   

8.
This study deals with an exergetic performance evaluation of a geothermally heated building. This building used in the analysis has a volume of 1147.03 m3 and a net floor area of 95.59 m2, while indoor and exterior air temperatures are 20 and 0 °C, respectively. The geothermal heating system used for the heat production was constructed in the Ozkilcik heating center, Izmir, Turkey. Thermal water has a pressure of 6.8 bar, a temperature of 122 °C and a mass flow rate of 54.73 kg/s, while it is reinjected at 3.2 bar and 72 °C. The system investigated feeds three regions. Among these, the Ozkanlar region has supply/return pressure and temperature values of 4.6/3 bar and 80/60 °C, respectively. Energy and exergy flows are studied to quantify and illustrate exergy destructions in the overall system. Total exergy input rate to the system is found to be 9.92 kW and the largest exergy destruction rate occurs in the primary energy transformation at 3.85 kW.  相似文献   

9.
Solar or solar-assisted space heating systems are becoming more and more popular. The solar energy utilization efficiency is high when the collector is coupled with indoor radiant heating suppliers, since in principle, lower supply temperature means lower demand temperature and then the system heat loss is less. A new type radiant end system is put forward for even lower supply temperature compared to the conventional radiant floor heating systems. A three dimensional model was established to investigate its energy supply capacities. Simulation results show that 50 W per meter length tube can be achieved with the medium temperature of 30 °C for heating and 15 °C for cooling. The predicted results agree well with the actual data from a demonstration building. Furthermore, it is demonstrated that a supply temperature of 22 °C in winter and of 17 °C in summer already met the indoor requirements. The new end system has good prospects for effective use of local renewable resources.  相似文献   

10.
Suiting for high gloss surface of injection molded parts free of painting is a great concern from both environment and cost effective considerations. As a result, variable mold temperature controls to achieve the mentioned goal have been paid great attentions. In this study, TiN and Teflon of various thicknesses were coated on the cavity surface of a tensile bar mold designed with double gate. During the injection molding process, melt–mold interface temperature was analyzed and simulated. In a regular injection molding of ABS resin using P20 as the mold material, the initial melt temperature may drop from 240 °C to about 65 °C after 0.01 s of contact with the cavity surface when the coolant temperature is 60 °C. For a TiN surface coating of 4 µm, the interface contact temperature was raised to 73.6 °C. For a Teflon coating of 22 µm, the contact surface temperature is as high as 100 °C initially (about 25 °C higher) and remains above 80 °C for about 0.4 s. Teflon coating on the cavity surface eliminates the weld-line marks, improves part surface smoothness and results in better tensile strength for weld line than TiN coating. Moreover, the cooling time was almost not affected. When surface coating is combined with infrared heating, not only the tensile strengths of the weld line were further enhanced but also the heating rate at mold surface is enhanced.  相似文献   

11.
Highly porous palladium bulks were prepared by spark plasma sintering from Pd powder, with tungsten carbide as the mold material. It was found that the surface purity increased but the porosity and BET surface area decreased with the increase in sintering temperature. Due to the formation of a porous microstructure with well-developed necks and higher purity of Pd on the surface, the bulk sintered at 700 °C for 5 min was applied to the displacement chromatographic processes (DCP) between saturated deuteride of the bulk and input hydrogen gas with various constant flow rates at 20 °C. The experimental results showed that the exchange rates in the DCPs are very high. In addition, high initial deuterium abundances can be obtained when hydrogen gas with a constant flow rate ranged from 2.00 to 9.00 cm/s is adopted. The initial deuterium abundances of the DCP outflow dropped significantly when the flow rate rose up to 14.50 cm/s.  相似文献   

12.
Mold temperature is a major factor in the quality of injection molding process. A high mold temperature setting is feasible to enhance the molding quality but prolongs the cooling time. Induction heating is the method currently used to heat the mold surface without increasing the molding cycle. However, one unresolved problem of induction heating is the proximity effect resulting from two adjacent coils with different current directions. The proximity effect substantially decreases heating efficiency, which then causes non-uniform heating. This effect is difficult to avoid in a single-layer coil. The most common solution, which is to use magnetic concentrators to reduce the proximity effect, does not obtain satisfactory results. In the novel magnetic shielding induction heating method developed in this study, heating efficiency and temperature uniformity are enhanced by using ferrite materials to separate the conflicting magnetic fields caused by the repulsive proximity effect. Three typical single-layer coils are investigated in this study, including a reciprocated single-layer coil, a single-layer spiral coil, and a rectangular frame coil. Appropriate placement of ferrite materials on these induction coils successfully eliminated the proximity effect, increased the heating rate, and improved temperature uniformity.  相似文献   

13.
Fluidized bed flash pyrolysis experiments have been conducted on a sample of jatropha oil cake to determine particularly the effects of particle size, pyrolysis temperature and nitrogen gas flow rate on the pyrolysis yields. The particle size, nitrogen gas flow rate and temperature of jatropha oil cake were varied from 0.3 to 1.18 mm, 1.25 to 2.4 m3/h and 350 to 550 °C. The maximum oil yield of 64.25 wt% was obtained at a nitrogen gas flow rate of 1.75 m3/h, particle size of 0.7–1.0 mm and pyrolysis temperature of 500 °C. The calorific value of pyrolysis oil was found to be 19.66 MJ/kg. The pyrolysis gas can be used as a gaseous fuel.  相似文献   

14.
The main objective of the present study is to investigate the performance characteristics of an underground air tunnel (UAT) for greenhouse heating with a 47 m horizontal, 56 cm nominal diameter U-bend buried galvanized ground heat exchanger. This system was installed in the Solar Energy Institute, Ege University, Izmir, Turkey. Based upon the measurements made in the heating mode, the average heat extraction rate to the soil is found to be 3.77 kW, or 80.21 W/m of tunnel length, while the required tunnel length in meters per kW of heating capacity is obtained as 12.46. The entering air temperature to the tunnel ranges from 14.3 to 21.5 °C, with an average value of 15.5 °C. When the system operates, the greenhouse air is at a minimum day temperature of 13.1 °C with a relative humidity of 32%. The maximum heating coefficient of performance of the UAT system is about 6.42, while its minimum value is about 0.98 at the end of a cloudy and cold day and fluctuates between these values at other times. The daily average maximum COP values for the system are also obtained to be 6.42. The total average COP in the heating season is found to be 5.16.  相似文献   

15.
Flame propagation in a confined tube configuration was evaluated for aluminum (Al) and molybdenum trioxide (MoO3) thermites starting at room temperature and pre-heated up to 170 °C. Flame propagation was analyzed via high speed imaging diagnostics and temperatures were monitored with thermocouples. Experiments were performed in a semi-confined flame tube apparatus housed in a reaction chamber initially at standard atmospheric pressure. The flame propagation behavior for the nano-particle thermite was compared to micron particle thermite of the same composition. Results indicate that increasing the initial temperature of the reactants results in dramatically increased flame speeds for nanocomposite thermite (i.e., from 627 to 1002 m/s for ambient and 105 °C pre-heat temperature, respectively) and for micron composite thermite (i.e., from 205 to 347 m/s for ambient and 170 °C pre-heat temperature, respectively) samples. Experimental studies were extended giving a cooling time for the heated thermites prior to ignition and flame propagation. It is shown that when 105 °C and 170 °C pre-heated thermites are cooled at a rate of 0.06 K/s, almost the same flame speeds are obtained as thermites at ambient temperature. However, when the cooling rate is increased to 0.13 K/s, the measured flame speeds approach the flame speeds of pre-heated samples.  相似文献   

16.
The poor thermodynamic and thermal stability of self-healing glass sealants restrict their applications in planar solid oxide fuel cells (SOFCs). In this paper, a calcium borate crystalline is prepared by melting-quench and a subsequent crystallization. The crystalline phases include CaB4O7 and CaB2O4. The in situ observation reveals that the micro-indentation on the surface of such crystalline can be healed when heating from room temperature to 840 °C at a heating rate of 40 °C min−1. Combining with the improved thermal stability, the crystalline sealant with desired self-healing property, at the operational temperature of SOFCs (e.g., 700-900 °C), provides additional solution for the sealing challenge of SOFCs.  相似文献   

17.
Oil shale pyrolysis kinetics and variable activation energy principle   总被引:1,自引:0,他引:1  
A modified first order kinetic equation with variable activation energy is employed to model the total weight loss of Ellajjun oil shale samples. Fixed bed retort with 400 g of oil shale sample size is used in this study in 350–550 °C temperature range. Variable heating rate, h, in the range 2.6–5 °C min−1 are tested.  相似文献   

18.
Apricot pulps was pyrolyzed in a fixed-bed reactor under different pyrolysis conditions to determine the role of final temperature, sweeping gas flow rate and steam velocity on the product yields and liquid product composition with a heating rate of 5 °C/min. Final temperature range studied was between 300 and 700 °C and the highest liquid product yield was obtained at 550 °C. Liquid product yield increased significantly under nitrogen and steam atmospheres. For the optimum conditions, pyrolysis of peach pulp was furthermore studied. Liquid products obtained under the most suitable conditions were characterized by FTIR and 1H-NMR. In addition, gas chromatography/mass spectrophotometer was achieved on all pyrolysis oils. Characterization showed that bio-oil could be a potential source for synthetic fuels and chemical feedstock.  相似文献   

19.
Under the consideration of the solar energy potential of Turkey, a V-type Stirling engine having two heaters was designed, optimized and then manufactured. The prototype engine was tested in laboratory condition using an electrical heating system. Tests were conducted within the temperature range of 650–1000 °C with 50 °C increments. The pressure ranged from the ambient value to 2 bar with 0.5 bar increments at each stage of temperature. The maximum power was obtained at 950 °C and 1.0 bar charge pressure as 118 W.  相似文献   

20.
In this letter, silver nanoclusters' formation was observed in Ag-exchanged soda-lime silicate glasses, followed by thermal annealing in air at temperatures of 570 °C or 600 °C. Spectroscopic data indicated that the aggregation of silver atoms appeared after heating at 570 °C or 600 °C for more than 25 h, resulting in an absorption band at about 410 nm, due to the surface plasmon resonance of silver nanoclusters in glass. The band intensity of the absorption peak increases with heating time. The mean nanocluster radius estimated based on Mie theory was ∼1.5 nm after heating at 600 °C for 45 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号