首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《热应力杂志》2012,35(1):55-71
Abstract

Modeling and understanding heat transport and temperature variations within biological tissues and body organs are key issues in medical thermal therapeutic applications, such as hyperthermia cancer treatment. In the present analysis, the bioheat equation is studied in the context of memory responses. The heat transport equation for this problem involving the memory-dependent derivative (MDD) on a slipping interval in the context of three-phase (3P) lag model under two-temperature theory is formulated and is then used to study the thermal damage within the skin tissue during the thermal therapy. Laplace transform technique is implemented to solve the governing equations. The influences of the MDD and moving heat source velocity on the temperature of skin tissues are precisely investigated. The numerical inversion of the Laplace transform is carried out using Zakian method. The numerical outcomes of temperatures are represented graphically. Excellent predictive capability is demonstrated for identification of an appropriate procedure to select different kernel functions to reach effective heating in hyperthermia treatment. Significant effect of thermal therapy is reported due to the effect of delay time and the velocity of moving heat source as well.  相似文献   

2.
通过对管内对流换热过程的灯用传递分析,提出用强化前后的传灯用Nu或传灯用量差ΔNue或ΔE作为强化传热性能评价指标。以工程上常用的螺旋槽管为例,讨论了Re、量纲1热通量、不同结构参数等对强化管传灯用性能的影响。分析结果表明,对于所选螺纹管结构参数,ΔNue随Re增加而增大;随量纲1热通量、量纲1长度的增加而递减。算式可有效评价强化管传灯用效果,以便选取最佳结构参数。  相似文献   

3.
In the field of bio heat transfer, as of now, the main concern of researchers lies in the proper and accurate thermal damage of the diseased tissues without destroying or damaging the neighboring healthy tissues during the tumor treatment. The present work aims to develop a new approach toward solving the bio heat transfer equations for the skin burn and hyperthermia treatments. Both analytical and numerical solutions are proposed. For the analytical study, a differential transform method is used to solve steady and unsteady state heat equations. The finite volume method is adopted to solve these equations numerically, which provides a better scope to solve the highly nonlinear complex equations. To obtain a complete solution, a code is developed in MATLAB and MATHEMATICA. The variation of different parameters, such as perfusion constant, space heating, surface step heating, and thermal conductivity, with time were observed. Apart from the above analysis of temperature distribution during skin burn through the spilling of hot beverage, its numerical solution was also performed for this problem at different boundary conditions. It was observed that with the help of the temperature distribution, depending on the time and the severity of the burn, different ranges of depths of the burn can be determined.  相似文献   

4.
The examination of exergy transfer characteristics caused by forced convective heat transfer through a duct with constant wall heat flux for thermally and hydrodynamic fully developed laminar and turbulent flows has been presented. The exergy transfer Nusselt number is put forward and the dependence relationships of the exergy transfer Nusselt number on the heat transfer Nusselt number, Reynolds number and Prandtl number are obtained. Expressions involving relevant variables for the local and mean convective exergy transfer coefficient, non-dimensional exergy flux and exergy transfer rate, etc. have been derived. By reference to a smooth duct, the numerical results of exergy transfer characteristics for fluids with different Prandtl number are obtained and the effect of the Reynolds number and non-dimensional cross-sectional position on exergy transfer characteristics is analyzed. In addition, the results corresponding to the exergy transfer and energy transfer are compared.  相似文献   

5.
Analytical solution is obtained of coupled laminar heat-mass transfer in a tube with uniform heat flux. This corresponds to the case when a layer of sublimable material is coated on the inner surface of a tube with its outer surface heated by uniform heat flux and this coated material will sublime as gas flows throught the tube.  相似文献   

6.
A closed-form (long-time) solution of one-dimensional dual-phase lag bioheat transfer problem with consistent time-periodic boundary conditions (BCs) is presented in this paper for planar, cylindrical, and spherical skin tissue for a newly developed solution methodology. The steady-periodic solution is composed of a steady-state part and an oscillating part; corresponding to the constant and oscillating parts of BCs, respectively. Using the superposition principle, these two parts are split into two problems, which are solved separately. The steady-state part is fairly straightforward to obtain, while for the oscillating part, an alternate Laplace transform (LT) approach is proposed in this work. It is demonstrated that for sinusoidal BCs, a closed-form solution in the time domain can be obtained by evaluating an approximate convolution integral, which emulates the effect of the inverse LT. The obtained closed-form solution is free of any series summation or numerical inversion, thereby, making it computationally very efficient compared with conventional LT and eigenfunctions-based approaches. The current methodology is verified with the established eigenfunctions expansion-based methodology. It can be seen that the long-time solutions obtained by these two approaches are almost identical. The verified methodology is further extended for the time-periodic nonsinusoidal BCs. The ease of implementation and simplicity of the new methodology for both sinusoidal and nonsinusoidal BCs is demonstrated using a few test cases. It is evident from the results that the developed methodology leads to an efficient and accurate solution.  相似文献   

7.
In this paper, laminar convective heat transfer in a two-dimensional microtube (MT) with 50 μm diameter and 250 μm length with constant heat flux is numerically investigated. The governing (continuity, momentum and energy) equations were solved using the finite volume method (FVM) with the aid of SIMPLE algorithm. Different types of nanofluids Al2O3, CuO, SiO2 and ZnO, with different nanoparticle size 25, 45, 65 and 80 nm, and different volume fractions ranged from 1% to 4% using ethylene glycol as a base fluid were used. This investigation covers Reynolds number in the range of 10 to 1500. The results have shown that SiO2–EG nanofluid has the highest Nusselt number, followed by ZnO–EG, CuO–EG, Al2O3–EG, and lastly pure EG. The Nusselt number for all cases increases with the volume fraction but it decreases with the rise in the diameter of nanoparticles. In all configurations, the Nusselt number increases with Reynolds number.  相似文献   

8.
Heat transfer characteristics of gaseous flows in a microtube with constant heat flux whose value is positive or negative are investigated on two-dimensional compressible laminar flow for no-slip regime. The numerical methodology is based on the Arbitrary–Lagrangian–Eulerian (ALE) method. The computations are performed for tubes with constant heat flux ranging from −104 to 104 W m−2. The tube diameter ranges from 10 to 100 μm and the aspect ratio of the length and diameter is 200. The stagnation pressure, pstg is chosen in such away that the Mach number at the exit ranges from 0.1 to 0.7. The outlet pressure is fixed at the atmosphere. The wall and bulk temperatures in microtubes with positive heat flux are compared with those of negative heat flux case and also compared with those of the incompressible flow in a conventional sized tube. In the case of fast flow, temperature profiles normalized by heat flux have different trends whether heat flux is positive or negative. A correlation for the prediction of the wall temperature of the gaseous flow in the microtube is proposed. Supplementary runs with slip boundary conditions for the case of D = 10 μm conducted and rarefaction effect is discussed. With increasing Ma number, the compressibility effect is more dominant and the rarefaction effect is relative insignificant where Kn number is less than Kn = 0.0096. And, the magnitudes of viscous dissipation term and compressibility term are investigated along the tube length.  相似文献   

9.
If the hydrodynamic diameter of a channel is comparable with the mean free path of the gas molecules moving inside the channel, the fluid can no longer be considered to be in thermodynamic equilibrium and a variety of non-continuum or rarefaction effects can occur. To avoid enormous complexity and extensive numerical cost encountered in modeling of nonlinear Boltzmann equations, the Navier–Stokes equations can be solved considering the concepts of slip flow regime and applying slip velocity boundary conditions at the solid walls.  相似文献   

10.
This paper investigates basic analytical expressions for Nusselt number with the effect of viscous dissipation on the heat transfer between infinite fixed parallel plates, where the focus is on hydro-dynamically and thermally fully developed flow of a Newtonian fluid with constant properties, neglecting the axial heat conduction. Thermal boundary conditions considered are: both the plates kept at different constant heat fluxes, both the plates kept at equal constant heat fluxes, and one plate insulated. From the analysis, new expressions for Nusselt numbers have been found, as a function of various definitions of the Brinkman number.  相似文献   

11.
An analysis of unsteady heat transfer in a two-dimensional flow past an infinite porous plate has been carried out under the following conditions: (1) constant or variable suction; (2) free-stream oscillating in time about a non-zero constant mean; and (3) constant heat flux at the plate. Approximate solutions to the temperature field have been derived. the transient temperature, the amplitude and phase of the Nusselt number are shown on graphs.  相似文献   

12.
In this study, the impacts of heat and mass transfer characteristics on an isotropic incompressible Casson fluid flow over an oscillatory plate with the incidences of solutal and thermal boundary conditions have been investigated. Exact solutions of the fundamental equations governing the fluid flow are determined by using the Laplace transform technique. Numerical results based on analytical solutions are presented in graphical and tabular illustrations to clarify the behaviors of the fluid. Most interestingly, both fluid velocity and species concentration increase with an increment of mass transfer coefficient, whereas the fluid velocity diminishes as oscillating frequency increases near the surface of the plate. This happens due to the presence of high fluctuation of the plate in the flow system. Finally, this investigation is helpful to the scientific community, and the obtained results can be used as benchmark solutions for solving nonlinear flow governing problems fully via various numerical methods.  相似文献   

13.
Y.B. Tao 《Solar Energy》2010,84(10):1863-1872
A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 105, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu1) increases and the Nusselt number in annuli space (Nu2) decreases. With the increase of tube wall thermal conductivity, Nu1 decreases and Nu2 increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at θ near π. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again.  相似文献   

14.
The solar energy flux distribution on the outer wall of the inner absorber tube of a parabolic solar collector receiver is calculated successfully by adopting the Monte Carlo Ray-Trace Method (MCRT Method). It is revealed that the non-uniformity of the solar energy flux distribution is very large. Three-dimensional numerical simulation of coupled heat transfer characteristics in the receiver tube is calculated and analyzed by combining the MCRT Method and the FLUENT software, in which the heat transfer fluid and physical model are Syltherm 800 liquid oil and LS2 parabolic solar collector from the testing experiment of Dudley et al., respectively. Temperature-dependent properties of the oil and thermal radiation between the inner absorber tube and the outer glass cover tube are also taken into account. Comparing with test results from three typical testing conditions, the average difference is within 2%. And then the mechanism of the coupled heat transfer in the receiver tube is further studied.  相似文献   

15.
In this paper, convective heat transfer effect on the non-Newtonian nanofluid flow in the horizontal tube with constant heat flux was investigated using computational fluid dynamics (CFD). For this purpose, non-Newtonian nanofluid containing Al2O3 and Xanthan aqueous solution as a liquid single phase with two average particle sizes of 45 and 150 nm and four particle concentrations of 1, 2, 4 and 6 wt.% and two concentrations of Xanthan aqueous solutions (0.6,1.0 wt.%) were used. Effect of particle size and concentration of Xanthan solution on convective heat transfer coefficient was investigated in different Reynolds numbers (500 < Re < 2500) for various axial locations of tube. The results showed that heat transfer coefficient and Nu number of non-Newtonian nanofluid increased with increasing concentration of Xanthan solution. By applying the modeling results, an equation was obtained for Nusselt number prediction using the dimensionless numbers. The results showed that the correlated data were in very good agreement with predicted data. The maximum error was around 5%.  相似文献   

16.
An MHD laminar flow through a two dimensional channel subjected to a uniform magnetic field and heated at the walls of the conduit over the whole length with a sinusoidal heat flux of vanishing mean value or not, is studied analytically. General expressions of the temperature distribution and of the local and mean Nusselt numbers are obtained by using the technique of linear operators in the case of negligible Joule and viscous dissipation and by taking into account the axial conduction effect. The principal results show that an increase of the local Nusselt number with Hartmann number is observed, and, far from the inlet section, the average heat transfer between the fluid and the walls shows a significant improvement at all values of Hartmann number used when the frequency of the prescribed sinusoidal wall heat flux is increasing in the case of vanishing mean value of the heat flux and this is true especially at low Peclet numbers.  相似文献   

17.
The theory for skin friction and heat transfer prediction to a compressible turbulent boundary layer including hydrogen/air combustion, proposed by Stalker, is improved in this paper. The original theory is modified through two aspects. One is to enhance the accuracy of the relation between hydrogen surface mass fraction and streamwise Reynolds number by directly integrating the Kármán momentum integral relation without local similarity hypothesis. Consequently, a new skin friction formula is established. The other is to change the Prandtl number from constant value of unity in the original theory to a variable computed based on the molecular kinetic theory. The performance of the improved theory is evaluated by an experiment with a flow on a flat plate and a designed two-dimensional numerical experiment. The skin friction and heat transfer predicted by the improved theory are found to be better consistent with the experimental or numerical experimental data than the original theory.  相似文献   

18.
An analytical method using Laplace transformation has been developed for one‐dimensional heat conduction. This method succeeded in explicitly deriving the analytical solution by which the surface temperature for the first kind of boundary condition can be well predicted. The analytical solutions for the surface temperature and heat flux are applied to the second and third of the boundary conditions. These solutions are also found to estimate the corresponding surface conditions with a high degree of accuracy when the surface conditions smoothly change. On the other hand, when these conditions erratically change such as the first derivative of temperature with time, the accuracy of the estimation becomes slightly less than that for a smooth condition. This trend in the estimation is similar irrespective of any kind of boundary condition. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(1): 29–41, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10069  相似文献   

19.
In this paper the natural convection boundary layer on a horizontal elliptical cylinder with constant heat flux and temperature dependent internal heat generation is investigated. The mathematical problem is reduced to a pair of coupled partial differential equations for the temperature and the stream function, and the resulting nonlinear equations are solved numerically by cubic spline collocation method. Results for the local Nusselt number and the local skin-friction coefficient are presented as functions of eccentric angle for various values of heat generation parameters, Prandtl numbers and aspect ratios. An increase in the aspect ratio of the elliptical cylinder decreases the average surface temperature of the elliptical cylinder with blunt orientation, while it increases the average surface temperature of the elliptical cylinder with slender orientation. Moreover, an increase in the heat generation parameter for natural convection flow over a horizontal elliptic cylinder with constant heat flux leads to an increase in the average surface temperature of the elliptical cylinder.  相似文献   

20.
Effect of mass transfer on the transient free convection flow of a dissipative fluid along a semi-infinite vertical plate in presence of constant heat flux, is studied by solving coupled non-linear system of partial differential equations, using Crank-Nicolson technique which is stable and convergent. Transient temperature, concentration and velocity profiles, local and average skin-friction, Nusselt number and Sherwood number are shown graphically for air. The effects of ε, viscous dissipative parameter, Schmidt number, buoyancy ratio parameter on the transient state are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号