首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Material removal in magnetorheological finishing of optics   总被引:2,自引:0,他引:2  
Kordonski W  Gorodkin S 《Applied optics》2011,50(14):1984-1994
A concept of material removal based on the principle of conservation of particles momentum in a binary suspension is applied to analyze material removal in magnetorheological finishing and magnetorheological jet processes widely used in precision optics fabrication. According to this concept, a load for surface indentation by abrasive particles is provided at their interaction near the wall with heavier basic (magnetic) particles, which fluctuate (due to collision) in the shear flow of concentrated suspension. The model is in good qualitative and quantitative agreement with experimental results.  相似文献   

2.
Removal rate model for magnetorheological finishing of glass   总被引:2,自引:0,他引:2  
Magnetorheological finishing (MRF) is a deterministic subaperture polishing process. The process uses a magnetorheological (MR) fluid that consists of micrometer-sized, spherical, magnetic carbonyl iron (CI) particles, nonmagnetic polishing abrasives, water, and stabilizers. Material removal occurs when the CI and nonmagnetic polishing abrasives shear material off the surface being polished. We introduce a new MRF material removal rate model for glass. This model contains terms for the near surface mechanical properties of glass, drag force, polishing abrasive size and concentration, chemical durability of the glass, MR fluid pH, and the glass composition. We introduce quantitative chemical predictors for the first time, to the best of our knowledge, into an MRF removal rate model. We validate individual terms in our model separately and then combine all of the terms to show the whole MRF material removal model compared with experimental data. All of our experimental data were obtained using nanodiamond MR fluids and a set of six optical glasses.  相似文献   

3.
李发胜  张平 《功能材料》2006,37(8):1187-1190
磁流变抛光是一种新兴的先进光学加工技术,已引起人们广泛关注.本文综述了磁流变抛光技术的应用状况及抛光机理,介绍了抛光用磁流变液的制备原理、制备方法及流变特性.并对影响抛光用磁流变液稳定性的因素及改进方法进行了详细分析,最后展望了今后的研究方向.  相似文献   

4.
Hu H  Dai Y  Peng X  Wang J 《Applied optics》2011,50(9):1220-1226
The edge effect could not be avoided in most optical manufacturing methods based on the theory of computer controlled optical surfacing. The difference between the removal function at the workpiece edge and that inside it is also the primary cause for edge effect in magnetorheological finishing (MRF). The change of physical dimension and removal ratio of the removal function is investigated through experiments. The results demonstrate that the situation is different when MRF "spot" is at the leading edge or at the trailing edge. Two methods for reducing the edge effect are put into practice after analysis of the processing results. One is adopting a small removal function for dealing with the workpiece edge, and the other is utilizing the removal function compensation. The actual processing results show that these two ways are both effective on reducing the edge effect in MRF.  相似文献   

5.
Dai Y  Hu H  Peng X  Wang J  Shi F 《Applied optics》2011,50(19):3321-3329
Although magnetorheological finishing (MRF) is a deterministic finishing technology, the machining results always fall short of simulation precision in the actual process, and it cannot meet the precision requirements just through a single treatment but after several iterations. We investigate the reasons for this problem through simulations and experiments. Through controlling and compensating the chief errors in the manufacturing procedure, such as removal function calculation error, positioning error of the removal function, and dynamic performance limitation of the CNC machine, the residual error convergence ratio (ratio of figure error before and after processing) in a single process is obviously increased, and higher figure precision is achieved. Finally, an improved technical process is presented based on these researches, and the verification experiment is accomplished on the experimental device we developed. The part is a circular plane mirror of fused silica material, and the surface figure error is improved from the initial λ/5 [peak-to-valley (PV) λ=632.8 nm], λ/30 [root-mean-square (rms)] to the final λ/40 (PV), λ/330 (rms) just through one iteration in 4.4 min. Results show that a higher convergence ratio and processing precision can be obtained by adopting error control and compensation techniques in MRF.  相似文献   

6.
The recent increase in demand for functional and technological requirements of the component results in the development of complex geometrical shapes and that too with close tolerances and fine surface quality. To fulfill the needs for finishing the external cylindrical surfaces such as groove, taper, step surfaces, and threads, an advanced finishing process based on magnetorheological (MR) fluid has been developed. The developed process can finish the external cylindrical surfaces with controlled magnetic field as likely similar to turning operation. Fine finishing of external cylindrical surfaces is a significant requirement in many functional applications. The wide applications of this present process can be valuable in automotive, machine tool production, valves manufacturing, and aerospace. A modified new MR finishing tool with flat and curved tip surface has been made to perform finishing on external cylindrical surfaces. The present cylindrical finished workpiece is useful in macaroni manufacturing machine. The surface roughness values Ra, Rq, and Rz are reduced to 54.41%, 51.65%, and 40% with flat tool tip surface and 80.88%, 81.32%, and 82.5% with curved tool tip surface in 90 min of finishing time. The overall results reported that the present process with curved tool tip surface is comparatively more useful in finishing the external cylindrical surfaces.  相似文献   

7.
Knowledge of the hardness of abrasive particles that are used in polishing is a key to the fundamental understanding of the mechanisms of material removal. The magnetorheological-finishing process uses both magnetic and nonmagnetic abrasive particles during polishing. The nanohardnesses of the micrometer-sized magnetic carbonyl iron and nonmagnetic abrasive particles have been measured successfully by use of novel, to our knowledge, sample-preparation and nanoindentation techniques. Some of the results reported compare favorably with existing microhardness data found in the literature, whereas other results are new.  相似文献   

8.
Various plastic products such as bottles’ plastic caps are manufactured through casting using permanent molds. To obtain the smooth surface on plastic caps during manufacturing, the required permanent mold die punch surface should be defect free and its roughness values in nanometer range. Two different magnetorheological (MR) fluid-based finishing processes are used for nano-surface-finishing of die punch. The MR ball end with solid rotating tool core is used to finish the flat surface, and a turning type MR finishing process is used for external circular surface of the present mold die punch. The material of the present permanent mold punch is P20 tool steel with hardness of 431 VHN. The final roughness values of flat and external circular surfaces of the present die punch are obtained as 30?nm and 80?nm from the initial values of 1080?nm and 630?nm in 120?min of finishing. The change in topography of the surface is observed using metallurgical microscope and mirror image test. The reduction in surface roughness at the nanolevel and microscopic improvement on the die punch surface have demonstrated the feasibility of present finishing processes to be useful in industries for manufacturing the smooth surface of bottles’ plastic caps.  相似文献   

9.
Fused deposition modeling (FDM) is among the extensively used and the most economical additive manufacturing processes. Currently, the surface finish obtained for FDM additive manufactured parts are not at par with the current industrial application. To overcome the limitation of high surface roughness of 3D printed parts, a novel finishing technique has been proposed which includes primary and secondary finishing processes. While facing and lapping has been used as primary finishing technique, the secondary finishing involves the use of ball end magnetorheological finishing (BEMRF) process. BEMRF process is an unconventional finishing process which utilizes an advanced approach to impart finish on magnetic as well as non-magnetic materials that may be flat or freeform in shape. This article presents the experimental and analytical study to finish a polylactic acid (PLA) workpiece material manufactured by FDM process and finished using the BEMRF technique. The surface roughness of the FDM component has been reduced from initial surface roughness Ra = 20 µm to final value of Ra = 81 nm by combined primary and secondary finishing processes. The effect of magnetorheological polishing (MRP) fluid’s composition and finishing time is discussed and is followed by optimization of MRP fluid for maximum percentage reduction in surface roughness.  相似文献   

10.
The polishing performance of magnetorheological (MR) fluids prepared with a variety of magnetic and nonmagnetic ingredients was studied on four types of initial surface for chemical vapor deposition (CVD) ZnS flats from domestic and foreign sources. The results showed that it was possible to greatly improve smoothing performance of magnetorheological finishing (MRF) by altering the fluid composition, with the best results obtained for nanoalumina abrasive used with soft carbonyl iron and altered MR fluid chemistry. Surface roughness did not exceed 20 nm peak to valley and 2 nm rms after removal of 2 microm of material. The formation of orange peel and the exposure of a pebblelike structure inherent in ZnS from the CVD process were suppressed.  相似文献   

11.
Magnetorheological honing process is developed for nanofinishing of internal surfaces of ferromagnetic and non-ferromagnetic cylindrical objects. The process makes use of smart fluid called magnetorheological (MR) polishing fluid for finishing which has a property to become stiff in the existence of magnetic field. The smart MR polishing fluid is made with the ingredients of carbonyl iron (CI) particles, abrasive particles, and base fluid. Direct current given to the electromagnet coil engenders magnetic field on finishing tool surface. Magnetic force acts on magnetic CI particles which further exert the repulsive force on nonmagnetic silicon carbide (SiC) abrasive particles and performs finishing when tool rotates as well as reciprocates inside the cylindrical workpiece. The CI and SiC particles present in MR polishing fluid are magnetically simulated and analyzed using finite element (FE) analysis. The distribution of magnetic flux density and magnitude of magnetic force acting on CI particles are analyzed through FE analysis. It is found that the CI particles which are available adjacent to the active abrasives are major responsible for indenting the active abrasive particles into workpiece surface. Also, the effect of finishing tool surface areas and particles size on the strength of chains of CI particles in MR polishing fluid have been analyzed.  相似文献   

12.
利用永磁流变抛光技术制造超光滑光学元件是一项极具前景的超精密制造技术.本文在明确磁流变抛光机理的基础上,主要对一种新颖的油基磁流变抛光液进行了配制,并对其主要性能如流变性、稳定性进行了试验研究,所获得的油基磁流变液的初始粘度达到0.5 Pa·s,流变性具有较大范围内的稳定性.对油基磁流变液抛光性能的试验研究证明其具有良好的抛光特性,抛光23min后工件表面粗糙度降低到0.6739nm.  相似文献   

13.
Ball end magnetorheological finishing is a unique process that utilizes a magnetically controlled ball of polishing fluid at the tip of the rotating tool to finish workpiece of different materials and shapes. The aim of this research is to study the effect of polishing fluid volume on finishing spot size and the surface finish associated with it. A magnetostatic simulation is done to find the variation of flux density in the working gap and on the workpiece surface. The maximum limit of the polishing fluid volume is selected on the basis of area of threshold magnetic flux density (minimum value required for finishing) region on the workpiece surface. The surface characteristics and the diameter of the finished spot are analyzed by varying the fluid volume. The surface obtained with high fluid volume is poorly finished and has scratch marks as the excess fluid flows out from the working gap and forms a thick ring at the periphery of the tool tip. Contrary to this, if the fluid volume is too less, then it merely rotates over the workpiece surface without causing any finishing action. An optimum range of fluid volume produces a good quality surface finish with constant finished spot size.  相似文献   

14.
We demonstrate the use of spots taken with magnetorheological finishing (MRF) for estimating subsurface damage (SSD) depth from deterministic microgrinding for three hard ceramics: aluminum oxynitride (Al(23)O(27)N(5)/ALON), polycrystalline alumina (Al(2)O(3)/PCA), and chemical vapor deposited (CVD) silicon carbide (Si(4)C/SiC). Using various microscopy techniques to characterize the surfaces, we find that the evolution of surface microroughness with the amount of material removed shows two stages. In the first, the damaged layer and SSD induced by microgrinding are removed, and the surface microroughness reaches a low value. Peak-to-valley (p-v) surface microroughness induced from grinding gives a measure of the SSD depth in the first stage. With the removal of additional material, a second stage develops, wherein the interaction of MRF and the material's microstructure is revealed. We study the development of this texture for these hard ceramics with the use of power spectral density to characterize surface features.  相似文献   

15.
Ball-end magnetorheological (MR) finishing process utilizes the magnetically controlled stiffened ball of an MR fluid for finishing purposes. Copper is a mechanically soft and chemically reactive material, so it is difficult to finish up to the nanometer-order level by traditional and most of the advanced finishing processes. In this research work, the problems associated with ball-end MR finishing of copper have been explored and a fluid composition suitable for the finishing of copper has been developed. A novel approach using two opposite magnetic poles has been used to enhance the magnetic flux density distribution between the tool tip and the copper workpiece surface. The same has been magnetically simulated and verified experimentally. The effect of fluid composition parameters has been analyzed by the statistical model developed by response surface. After 30 minutes of finishing time, a nano-finished surface with very few shallow scratches was achieved.  相似文献   

16.
The penetration behavior of tungsten-alloy long-rod penetrators into glass targets is investigated and contrasted at two impact velocities, 1.25 km/s and 1.70 km/s. Penetration depths and residual rod lengths were measured by means of a 600-kV flash X-ray system at different times during penetration. The wavecode CTH was used to simulate numerically the experiments using a Drucker–Prager constitutive model, where the constitutive constants were determined from independent characterization experiments. The numerical results are compared to the experimental data and good agreement is shown.  相似文献   

17.
增塑剂对磁流变弹性体磁流变效应的影响   总被引:3,自引:0,他引:3  
磁流变弹性体是磁流变材料的一个重要分支,它兼有磁流变材料和弹性体的优点,同时克服了磁流变液沉降、稳定性差等缺点.但目前研制出的磁流变弹性体存在磁流变效应和机械性能上的矛盾,难以在需要高强度的变刚度器件中实际应用.本文研究了磁流变弹性体基体中增塑剂对材料磁流变效应的影响.结果表明,在基体中添加增塑剂使得磁流变弹性体的相对磁流变效应有较大幅度提高,并超过了目前文献中报道的最佳水平.文中还对磁流变弹性体的机械性能进行了评估,结果发现添加增塑剂对磁流变弹性体的机械性能影响不大.这表明在制备硬性工程实用磁流变弹性体时,在基体中添加增塑剂可以在保证机械性能的同时提高材料的磁流变特性.  相似文献   

18.
19.
A novel sodium calcium borate glass derived hydroxyapatite (G-HAP) with different ranges of particle size was prepared by immersion sodium calcium borate glass in 0.1 M K2HPO4 solution by the ratio of 50 g L−1 for 7 days. The unique advantage of G-HAP for the adsorption of fluoride ions in solutions was studied. The effects of size and quantity of particles, pH value and adsorption time on adsorption performance were investigated. The maximum adsorption capacity was 17.34 mg g−1 if 5 g L−1, <100 μm G-HAP was added to a solution with an initial pH value of 6.72 and the adsorption time was 12 h. The results showed that the micro-G-HAP could immobilize F in solution more effectively than commercial nano-HAP, which makes potential application of the G-HAP in removing the fluoride ions from wastewater. The adsorption kinetics and isotherms for F could be well fitted by a second order kinetic model and Freundlich isotherm model respectively, which could be used to describe the adsorption behavior. The mechanism of G-HAP in immobilizing F from aqueous solutions was investigated by the X-ray diffraction (XRD), infrared spectra (IR) and scanning electron microscopy (SEM).  相似文献   

20.
In many iron meteorites, a lamellar structure is found which consists of ferrite () and another phase which is probably austenite (γ). In some of these regions, this lamellar structure has decomposed to a coarser structure of and another phase which may be austenite. Microstructural evidence is presented that the coarsening occurs by movement of a high-angle boundary separating the two lamellar structures. Examination of diffusion coefficients in the Fe-Ni system shows that the coarse structure could not have formed by volume diffusion, but the lamellar spacing is consistent with formation by diffusion along the interface. Diffusion calculations are made which support the argument that high-angle interface diffusion allows the coarsening to occur at temperatures considerably below those where volume diffusion is too low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号