首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
超声波铣削加工材料去除率的理论模型   总被引:9,自引:0,他引:9  
超声波铣削加工适于硬脆材料复杂型腔的加工,加工中影响材料去除率的因素很多,为了优化加工参数以及更好地控制加工过程,研究了各种加工参数对材料去除率的影响规律。分析了工具的高频振动、旋转以及机床进给三种运动综合作用下超声波铣削加工的材料去除机理,在传统超声波加工机理以及材料去除率模型的基础上,基于压痕断裂理论,建立了超声波铣削加工材料去除率理论模型。该模型可用于仿真实验研究及预测超声波铣削加工中的材料去除率。  相似文献   

2.
建立了超声振动辅助气中放电加工的有限元模型,使用ANSYS分析软件对其温度场进行了数值模拟,计算出了仿真条件下的材料去除率,并通过加工试验验证了模拟结果,发现与试验结果吻合较好。结果表明,用ANSYS来计算超声振动辅助气中放电加工的材料去除率是一种行之有效的方法。  相似文献   

3.
基于超声加工所具有的加工效率和加工表面质量高等特性,提出了一种超声振动辅助固结磨粒化学机械复合抛光硅片新技术。对抛光工具及复合抛光实验系统的建立进行了描述,在此基础上开展硅片抛光表面形貌及材料去除机理的理论及实验研究,得到不同抛光力下的研究结果。所建立的理论模型及实验结果表明,超声振动辅助固结磨粒抛光有利于硅片表面质量及材料去除率的提高,且随着抛光力的增大,抛光表面质量下降,材料去除效果提高。  相似文献   

4.
滑移效应对液体磁性磨具孔光整加工的材料去除率有重要影响,它可能导致磁场强度较高区域的工件表面材料去除率较低,进而导致加工不一致,甚至导致加工堵塞,阻碍加工的进行,缩短设备的寿命。通过理论分析,建立了滑移模型及材料去除率模型。得到了滑移效应对材料去除率的影响规律:液体磁性磨具孔光整加工存在有效磁场强度区间;在该区间内,材料去除率随磁场强度的增大而增大;在该区间外,加工效率极低或不能进行加工。设计实验验证了所得结论。提出通过选用适当磁场并旋转工件角度的优化方法来达到较好加工效果的工艺改进。研究对液体磁性磨具孔光整加工技术的理论分析和工艺改进有较大意义。  相似文献   

5.
《机械强度》2017,(3):557-563
在半导体材料放电加工可行性的基础上,分析了影响材料去除率的几个主要因素,其中包括空载电压、峰值电流、脉冲宽度以及脉冲间隔。采用中心组合设计实验,考察峰值电流、脉冲宽度、脉冲间隔这3个因素对单晶Si放电加工的材料去除率的影响,建立了单晶Si放电加工的材料去除率的响应模型,进行响应面分析。方差分析结果表明模型具有很好的拟合程度和适应性。采用满意度函数(DFA)确定了单晶Si放电加工的最佳工艺参数,当峰值电流取18.5A、脉冲宽度取358.62μs、脉冲间隔取20μs时,满意度为0.912,此时材料去除率的最优值为76.26 mm~3/min。用所确定的最佳工艺参数在电火花成型机床上重复多次实验,测得P型单晶硅的平均MRR为73.86 mm~3/min。模型预测结果与最佳工艺参数下的实验结果平均相对误差为3.2%,验证实验表明该模型能实现相应的半导体材料放电加工过程的材料去除率预测。  相似文献   

6.
超声加工方法广泛应用于工程陶瓷等硬脆材料的加工生产中。传统超声加工方法运动部件较多,操作复杂,为提高加工效率、降低成本,提出了复频超声加工方法,并建立了自由质量块的数学模型,分析了复频超声加工方法的加工原理,设计并加工了一套复频超声加工装置,并对陶瓷材料进行了实验研究,得到不同加工条件下各试件的材料去除率;比较各试件的材料去除率,发现复频超声加工方法相较于传统超声加工,其加工效率可以提高3倍,这为复频超声加工的设计及推广提供了理论指导。  相似文献   

7.
蓝宝石衬底双面研磨的材料去除机理研究   总被引:1,自引:0,他引:1  
对蓝宝石双面研磨加工进行了实验研究,借助SEM观察被加工工件表面,发现双面研磨加工的工件表面存有磨粒的二体、三体延性和磨损加工痕迹;建立了材料的理论去除模型并进行了计算,且与实验加工值进行了对比。结果表明,蓝宝石双面研磨中同时存在延性去除和脆性去除,该模型可以定性地描述双面研磨加工材料的去除率。  相似文献   

8.
工件材料在切削加工过程中所产生的铣削力对加工稳定性、加工的成品率以及工件质量有着十分重要的影响。对光学玻璃这种典型的硬脆性材料,使用传统的铣削方式难以得到高效精密的加工,超声铣削加工是一种特别适用于非金属材料以及难加工材料的加工方式。首先建立了超声振动铣削光学玻璃材料的平均铣削力模型,从理论上得出超声振动铣削加工可有效的降低加工过程中的铣削力这一结论,并用实验验证了这一结论。实验结果表明,与普通铣削加工相比,超声铣削加工明显的降低了切削加工过程中产生的切削力,提高了加工的稳定性等。  相似文献   

9.
针对高速加工的特点和难加工材料的组成成分、力学性能,对高速铣削难加工材料(26NiCrMoV145)的切削力进行了研究。在球头铣刀刀刃线的几何模型的基础上,采用理论分析和系数的方法,建立了螺旋刃球头铣刀的铣削力模型。对不同切削条件下的铣削力进行了仿真预测,与实验数据相吻合,证明所建立模型的正确性。  相似文献   

10.
超声辅助磨削是一种套料芯棒加工方法,而硬脆材料在超声辅助磨削加工过程中的去除模式主要为脆性断裂,这将导致加工出的芯棒直径与砂轮内径之间存在尺寸误差。针对上述问题,通过分析超声辅助磨削加工中砂轮表面金刚石磨粒的运动轨迹,运用压痕断裂力学理论建立了超声辅助磨削芯棒的直径预测模型。该模型考虑了脆性材料断裂时产生的侧位裂纹扩展对芯棒直径的影响。通过对K9光学玻璃材料进行超声辅助套料试验对模型进行了标定和验证,接着研究了进给速度和转速对芯棒直径误差的影响规律。通过对比研究发现,模型计算结果与试验结果吻合较好,误差小于5%,验证了模型的有效性。试验结果表明,采用适当的低转速和大进给速度可以有效降低超声辅助磨削芯棒直径的尺寸误差。本文所建模型可为超声辅助磨削套料芯棒的砂轮选择提供理论指导。  相似文献   

11.
Micro ultrasonic machining (micro-USM) is an unconventional micromachining technology that has capability to fabricate high aspect ratio micro-holes, intricate shapes and features on various hard and brittle materials. The material removal in USM is based on brittle fracture of work materials. The mechanical properties and fracture behaviour are different for varied hard and brittle materials, which would make a big difference in the processing capability of micro-USM. To study the processing capability of USM and exploit its potential, the material removal of work materials, wear of abrasive particles and wear of machining tools in USM of three typical hard and brittle materials including float glass, alumina, and silicon carbide were investigated in this work. Both smoothed particle hydrodynamics (SPH) simulations and verification experiments were conducted. The material removal rate is found to decrease in the order of glass, alumina, and silicon carbide, which can be well explained by the simulation results that cracking of glass is faster and larger compared to the other materials. Correspondingly, the tool wear rate also dropped significantly thanks to the faster material removal, and a formation of concavity on the tool tip center due to intensive wear was prevented. The SPH model is proved useful for studying USM of different hard and brittle materials, and capable of predicting the machining performance.  相似文献   

12.
A review on the current research trends in ductile regime machining   总被引:1,自引:0,他引:1  
Ductile regime machining is an alternative method for polishing of brittle materials to obtain a high quality surface finish by a ductile or plastic material removal process. Hence, there is a growing interest to study ductile regime machining over several decades. This paper reviews current state of research and development in ductile regime machining. The research and development associated with mechanism of brittle–ductile transition, surface integrity, and the factors influencing ductile regime machining are discussed in details in this paper.  相似文献   

13.
Ceramic matrix composites of type C/SiC with superior properties have got increasing importance in many fields of industry, especially in the aerospace area. Rotary ultrasonic machining is a high-efficiency processing technology for these advanced materials. However, due to the inhomogeneity and anisotropy of these composites, the machining process is still challenging to achieve desired result due to the lack of understanding and control of material removal mechanism. In this paper, the maximum depth of penetration by diamond abrasives in workpiece material is proposed to quantify the material removal modes. A model of maximum depth of penetration for rotary ultrasonic face machining (RUFM) was developed based on the indentation theory. An experimental RUFM of C/SiC was carried out, and it revealed that the material removal mechanism transited from ductile mode to brittle fracture mode with the decrease of cutting speed. Similar transition was observed with the increase of feed rate and cutting depth. By comparing the measured cutting force with simulation, a critical depth of penetration for the cutting mechanism transition was defined at about 4 μm. The processed surface topography was studied, and the transition of material removal modes was identified by the sudden change of the 3D surface roughness map at the critical penetration depth. Thus, the maximum depth of penetration model developed in this paper can be applied to identify the ductile or brittle fracture removal mode in RUFM of C/SiC using the cutting parameters. This allows controlling the material removal mechanism to achieve desired machining efficiency and quality.  相似文献   

14.
激光加热辅助切削工程陶瓷技术即使用激光作为外加热源先于刀具加热软化陶瓷工件,然后再使用刀具将软化的材料去除。较高的剪切变形区温度降低了陶瓷材料的屈服应力和硬度,陶瓷变形特征从脆性转变为塑性或者准塑性,从而提高切削效率,延长刀具使用寿命,有望解决陶瓷加工中的低效率和高成本现状。从激光加热辅助切削工程陶瓷研究进展、激光束的整合,以及切削机理等方面,对激光加热辅助加工工程陶瓷做了较为全面的论述。  相似文献   

15.
Ultrasonic machining (USM) has been considered as a new cutting technology that does not rely on the conductance of the workpiece. USM presents no heating or electrochemical effects, with low surface damage and small residual stresses on workpiece material, such as glass, ceramics, and others; therefore, it is used to drill microholes in brittle materials. However, this process is very slow and tool wear dependent, so the entire process has low efficiency. Therefore, to increase microhole drilling productivity or hole quality, rotary ultrasonic machining (RUM) is considered as a strong alternative to USM. RUM, which presents ultrasonic axial vibration with tool rotation, is an effective solution for improving cutting speed, precision, tool wear, and other machining responses beyond those of the USM. This study aims to reduce the microchipping or cracking at the exit of the hole, which inevitably occurs when brittle materials are drilled, with consideration of tool wear. To this end, response surface analysis and desirability functions are used for experimental optimization. The experimental results showed that the proposed RUM scheme is suitable for microhole drilling.  相似文献   

16.
Micro-end-milling can potentially create desired 3D free-form surface features on silicon using ductile machining technology. A number of technological barriers must be overcome for micro-end-milling to be applied in the cutting of single crystal silicon. To produce smooth surfaces on brittle materials, such as silicon, it is important that the material be machined in the ductile mode. A major limitation of machining brittle materials is that the process of removing the material can generate subsurface damage. We have carried out an experimental study to find the optimum cutting conditions for obtaining ductile regime machining using a micromilling machine. The ductile and brittle regimes in the machining of silicon using diamond-coated end mills were demonstrated by machining grooves. The force ratio, Ft/Fc, was used to determine the milling performance on silicon. The experimental data show that the dominant ductile cutting mode was achieved when Ft/Fc?>?1.0.  相似文献   

17.
The single-point diamond machining of several polymeric materials has been investigated. The final surface structure and roughness of the workpiece is determined by well-established fundamentals of polymer mechanics. Material is removed via ductile, brittle, or transitional mechanisms that depend on polymer properties such as glass transition temperature, relaxation time, degree of crosslinking, and viscosity. For some materials, the mechanism could be changed from ductile to brittle with a change of operating and tool parameters. In brittle materials, the surface roughness is largely controlled by the rake face angle of the diamond. For ductile workpieces, the melt viscosity of the polymer is important. Crosslinked materials are restricted from ductile behavior by the presence of chemical bonds. As a result, material removal occurs by rupture or an extreme fracture process. With an understanding of polymer behavior, suitability of new materials for single-point diamond machining can be assessed. The change of successful processing within the operating range of the tool can be determined with a minimum number of trial and error experiments.  相似文献   

18.
Owing to brittleness and hardness, optical glass is one of the materials that is most difficult to cut. Nevertheless, as the threshold value of the undeformed chip thickness is reached, brittle materials undergo a transition from the brittle to the ductile machining region. Below this threshold, it is believed that the energy required to propagate cracks is larger than the energy required for plastic deformation. Thus, plastic deformation is the predominant mechanism of material removal in machining these materials in this mode. An experimental study is conducted to diamond-cut BK7 glass in ductile mode. As an effective rake angle plays a more important role than a nominal rake angle does, a discussion about this effective angle is carried out in the paper. The investigation presents the feasibility of achieving nanometric surfaces. Power spectral density (PSD) analysis on the machined surfaces shows the difference between the characteristics of the two modes. During the experiments, it is recognised that tool wear is a severe problem. Further study is in process to improve the cutting tool life.  相似文献   

19.
New Materials and their Machining   总被引:1,自引:1,他引:0  
Sophistication in materials applications is the basis of technological progress and therefore there is a continuous search for new materials: i.e. materials that are light in weight, strong, tough, corrosion resistant, durable, wear resistant, resistant to various hazards of nature, safe for our health, etc. The new generation of materials with improved properties pose problems during machining because of their material structure, and hence they require new machining processes. The interactions between the tool and workpiece and also between the various micromechanisms involved in material removal during ductile regime machining of new materials, such as glasses, ceramics, and semiconductors, are discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号