首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
结合主元分析(PCA)和径向基函数(RBF)神经网络,建立了地下水动态模拟与软测量预测模型。通过主元分析法提取主要成分,实现数据预处理;将选取的主要成分作为RBF神经网络的输入;采用k均值聚类算法确定RBF网络隐含层参数,并用递进最小二乘法确定输出层权值。仿真结果表明,该模型优化了网络结构,提高了预测精度。  相似文献   

2.
针对利用核主成分分析方法处理非线性问题存在对干扰点的敏感性和特征空间中的主成分缺乏明确的物理意义等缺点,提出了一种改进的模糊KPCA(Improved Fuzzy Kernel Principal Component Analysis,IFKPCA)算法,对每个样本点进行加权处理,并利用基于距离的特征核函数和径向基核函数,把特征空间中的重构误差和输入空间的误差对应起来。用算法对2个无干扰和有干扰的数据集进行了仿真实验。同时,对药物代谢的数据进行主成分提取。结果表明,IFKPCA弱化了干扰点对样本分布的影响,表现出较好的鲁棒性;基于距离的特征核函数对样本分布具有较大的依赖性,而径向基核函数对样本分布具有良好的鲁棒性,对药物代谢的应用结果也进一步表明了IFKPCA的有效性和可行性。  相似文献   

3.
城市智能增长已经成为城市规划者和决策者广泛采用的一种建设城市的环保方式,这对衡量城市智能增长水平具有实际意义。在本文中,定义理性度(RD)来描述城市智能增长的水平,通过主成分回归(PCR)和径向基函数(RBF)神经网络建立RD评价模型。以玉门和Otago为例进行研究,二者的RD值分别为0.04482和0.04591,这表明这2个城市智慧增长计划都取得了一定的成功,Otago的城市发展水平优于玉门,同时研究发现玉门应优先考虑城市绿化与环境保护,而Otago则要优先考虑经济发展。本文模型为追求科学智能增长的城市提供了有力的参考。  相似文献   

4.
介绍了一种三层径向基函数神经网络,其学习算法采用正交最小二乘算法.首先根据正交最小二乘算法得到径向基函数神经网络的结构;然后对该网络的权值进行训练使它逼近给定的函数.为了验证径向基函数神经网络所具有的对任意非线性映射的任意逼近能力和自学习、自适应能力,以两关节机械手为辨识对象来进行实验研究.实验结果表明,该径向基函数神经网络具有良好的模型学习和逼近能力,并且学习速度快、收敛性好、鲁棒性强,尤其适合于具有连续线性与非线性对象的复杂系统的控制实时性要求.  相似文献   

5.
提出了基于智能嗅觉系统的识别混合有毒气体组分浓度的方法。该系统包括两大部分:有毒气体传感器阵列模埠和径向基函数神经网络模块。前者用于获取反映有毒气体组分的电信号,后者用于提高识别混合有毒气体组分的选择性,降低气体传感器阵列中各个敏感器件的交叉灵敏度。径向基函数神经网络具有很强的非线性并行处理能力和容错能力,实例分析取得了满意的测量结果。  相似文献   

6.
李鹏飞  杨宁  景军锋 《计算机测量与控制》2012,20(10):2751-2753,2759
对径向基函数神经网络在疵点分类中的应用进行了研究;提出了一种应用于模式识别的RBF训练算法,提取织物疵点的特征参数如均值、方差和熵,再利用神经网络进行疵点类别的判别,精确度高达百分之九十多,准确地反映了每一类瑕疵特征的真实分布情况;然后分析了另一种神经网络--学习矢量量化网络LVQ对疵点分类的效果,将它们的训练速度和分类精度进行了比较;实验结果表明,采用RBF神经网络比LVQ神经网络的分类速度更快、精度更高,更有效地被应用于织物疵点分类中。  相似文献   

7.
基于径向基函数神经网络的红外步态识别   总被引:1,自引:0,他引:1  
为提高红外步态识别的效果,提出一种基于径向基函数神经网络的多分类器融合算法。对红外步态序列,分别应用基于轮廓线傅立叶描述子特征的模糊分类器和基于下肢关节角度特征的贝叶斯分类器进行识别,再利用径向基函数神经网络的学习和分类功能,对获得的输出信息进行度量层的融合和再识别。仿真实验结果表明,该算法获得更加精确的分类效果。  相似文献   

8.
提出了一种新的结构自适应的径向基函数(RBF)神经网络模型。在该网络中,自组织映射(SOM)神经网络作为聚类网络,采用无监督学习算法对输入样本进行自组织分类,并将分类中心及其对应的权值向量传递给RBF神经网络,作为径向基函数的中心和相应的权值向量;RBF神经网络作为基础网络,采用高斯函数实现输入层到隐层的非线性映射,输出层则采用有监督学习算法训练网络的权值,从而实现输入层到输出层的非线性映射。通过对字母数据集进行仿真,表明该网络具有较好的性能。  相似文献   

9.
为设计具有良好逼近性能的径向基神经网络,提出一种两层结构的自适应混合学习算法.内层迭代过程综合了梯度下降法和智能优化方法的优点,采用基于衰减梯度信息的智能优化方法,对具有固定结构的网络进行参数训练;外层迭代根据内层迭代的效果,利用最优停止规则自适应地动态调节网络隐含层节点数,使算法以较大概率收敛至全局最优.设计了网络结构修正算子,实现对最终结果的进一步简化.最后,文章给出算法实现的具体步骤,并通过仿真实例验证了算法有效性和可行性.  相似文献   

10.
针对径向基函数(RBF)神经网络的非线性特点,利用已控点来训练RBF网络,而达到预测未知非地震数据控点的目的。综合已知点和预测控制点,把得到的规则数据体大致对应相应空间进行排布用以全空间成像,最后利用相关软件对处理后的非地震数据进行了三维数据的成像,从而可以显示全息的三维信息,该方法显示出很强的处理问题的能力,同时该仿真结果也表明了该方法的有效性和可行性。  相似文献   

11.
12.
对于选择性催化还原(SCR)烟气脱硝装置喷氨量的精确控制,传统PID控制器的参数是基于设计负荷预先整定,在变工况下系统呈现出强非线性和滞后性,难以确保最佳控制量.通过引入动态结构的RBF神经网络,利用敏感度法来增加和删除神经元,解决RBF神经网络结构过大或过小的问题,保证预测网络结构的精度.该网络综合学习SCR脱硝装置主要相关参数,以NOx排放量与设定值之间误差最小作为训练信号,实现喷氨量的最优控制.实验结果表明,在变工况下,此方案与传统PID相比,能满足SCR出口NOx排放量,有效减少了氨气逃逸量,具有良好的变工况适应能力.  相似文献   

13.
根据神经网络能有效修正灰色预测模型的思路,本文提出了基于灰色系统及径向基神经网络的组合预测模型。通过采集园区节点交换机的流量数据,在分析网络流量时间序列特性的基础上建立灰色GM(1,1)模型,并采用径向基神经网络对预测模型残差进行修正。实验结果和仿真实验表明,组合模型效果及预测精度远优于单一灰色预测模型。  相似文献   

14.
逆系统方法的径向基函数网络实现   总被引:12,自引:0,他引:12  
研究采用径向基函数网络(RBFN)构造系统逆控制器的工程实现问题,同时给出该直接逆动态控制器存在的充分条件。为进一步改善基于RBFN的直接逆动态控制器的动态性能,对该伪逆系统进行PID综合。仿真研究表明,以RBFN拟合对象逆过程的PID综合控制策略不仅能改善系统的动态性能,而且具有良好的参数鲁棒性能。  相似文献   

15.
传统径向基函数(RBF)神经网络模型使用完整的隐含层节点进行模型构建时,会因缺乏隐含层节点抽取机制而使得受训模型的泛化性能下降,导致模型更加复杂。为此,提出一种改进的RBF神经网络模型。通过Lasso稀疏约束对隐含层节点和输出层连接权值进行稀疏表示,去除冗余和不相关隐含层节点的同时保留重要的隐含层节点,并使用交叉验证和网格搜索确定收缩参数以优化模型分类性能。实验结果表明,与现有RBF神经网络模型相比,该模型具有更低的计算复杂度和更高的分类精度。  相似文献   

16.
游培寒  王振家  项海林 《计算机工程》2003,29(17):126-127,F003
提出了一种基于误差的径向基神经网络竞争学习法,它以网络的输出误差为度量,通过竞争调节神经元中心,RLS算法训练网络的权值,并利用IPL算法判断网络神经元的冗余性。仿真结果表明,该算法提高了网络的输出精度,简化了网络结构,其运算速度也较快。  相似文献   

17.
基于正规正交分解(Proper Orthogonal Decomposition,POD)提出一种适用于非线性时间序列预测的径向基函数(Radial Basis Function,RBF)神经网络模型-POD-RBF神经网络模型.该模型在选取中心时考虑了时间序列数据之间的时序关系,并且使得中心的选取具有并行性.股票价格预测问题的模拟结果表明,POD-RBF神经网络可以有效地用于非线性时间序列预测问题.与基于硬C均值(Hard C-means,HCM)聚类的RBF神经网络(HCM-RBF)和基于正交最小二乘(Orthogonal LestSquare,OLS)的RBF神经网络(OLS-PBF)相比,POD-RBF神经网络不仅具有更好的训练、预测精度,而且具有更好的收敛稳定性、更好的泛化能力和抵抗噪声干扰的能力.  相似文献   

18.
基于RBF神经网络的可疑交易监测模型   总被引:2,自引:0,他引:2       下载免费PDF全文
针对国内外金融领域可疑交易的低检测率问题,通过对RBF(Radial Basis Function)神经网络技术的分析与研究,提出了一种基于APC-III聚类算法和RLS(Recursive Least Square)算法的面向反洗钱的RBF神经网络模型并加以实现。APC-III聚类算法用于确定RBF神经网络隐含层的中心向量,RLS算法用来调整隐含层与输出层之间的连接权值。RBF神经网络与支持向量机(SVM)和孤立点检测相比,有更高的检测率和较低的误检率,因此,提出的模型具有重要的理论和实用价值。  相似文献   

19.
针对径向基函数神经网络参数难以设置以及因此而导致的网络隐层结构不明朗的问题,提出了一种应用控制种群多样性的微粒群( ARPSO)优化径向基函数神经网络( RBF)的方法。通过引入“吸引”和“扩散”因子对基本微粒群算法进行改进,并将改进的微粒群算法用于RBF聚类半径的优化,进而能够合理地确定RBF的隐层结构。将用ARPSO优化的RBF神经网络应用于非线性函数逼近,经实验仿真验证,与基本微粒群( PSO)算法、收缩因子微粒群( CFA PSO)算法优化的RBF神经网络相比较,在收敛速度和识别精度上有了显著的提高。  相似文献   

20.
改进的径向基函数神经网络预测模型   总被引:1,自引:0,他引:1  
梁斌梅  韦琳娜 《计算机仿真》2009,26(11):191-194
在提高网络传输性能的研究中,径向基函数神经网络(RBF网络)的基函数个数、中心及宽度的确定一直是难解决的问题,为提高RBF网络泛化能力是当前一个重要的研究问题.分析了传统RBF网络工作原理及不足,提出了改进.采用梯度下降法训练径向基函数中心和宽度,提高网络泛化性能.改进最优停止训练算法,使算法效率提高,且避免过拟合现象,最终使RBF网络获得更优的泛化能力.用改进的RBF网络对iris及wine数据集建立预测模型,进行仿真.结果表明,梯度下降方法训练出更优的基函数参数,改进的最优停止训练方法缩短了训练时间、提高预测精度,网络泛化能力有明显提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号