首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
降低汽车空腔的振动,是抑制汽车车内噪声的有效途径之一;以激振器、作动器和控制器等为主要部件,搭建了简化的汽车车内噪声主动控制系统,该系统通过将汽车空腔模型简化为板件,以减弱板件振动为目标,实现了汽车车内噪声主动控制;采用简谐正弦及余弦信号作为激振器发出的激励,用于模拟板件的初始振动,控制器通过采用模糊控制算法直接控制压电陶瓷作动器的振动,压电陶瓷作动器的振动用于抑制板件的振动,完成了汽车车内噪声主动控制系统仿真;仿真结果表明,研究采用的汽车车内噪声主动控制系统,使汽车空腔振动降低23%,为解决由汽车发动机和动力总成的振动所引发的汽车车内噪声问题提供了一个有效途径。  相似文献   

2.
在采用加速度传感器的振动主动控制平台中,为了有效抑制外力可用微分方程描述的含输入时滞受迫振动响应,基于积分变换和状态导数极点配置法,提出了一种适应连续外扰的时滞加速度反馈控制器设计方法.以粘贴有压电陶瓷和加速度传感器的受正弦激励的智能梁为仿真控制对象,仿真结果表明,此控制器能在任意输入时滞下有效抑制智能梁的持续受迫振动响应.与不考虑时滞的同类控制器相比,该控制器有较好的稳定性及控制效果.  相似文献   

3.
针对车削加工时振动对加工精度的影响,设计了一种车削振动主动控制系统,系统控制器采用基于人工免疫系统的改进型反馈控制器,执行器采用压电陶瓷材料设计制作,建立压电陶瓷执行器和专用刀架传递函数模型,在Matlab环境下进行建模仿真,当振动频率在50~150Hz时仿真结果表明该控制系统能抑制振幅97%以上;另外进行了现场试验,以普通45#钢为车削工件,车削深度为0.07mm,在正常转速下对车削振动进行主动控制,结果证明设计的车削振动控制系统能抑制车削振动幅度37%以上。  相似文献   

4.
This paper presents the modeling, design and simulation of a Robust Decentralized Fast Output Sampling (RDFOS) feedback controller for the vibration control of a smart structure (flexible cantilever beam) when there is actuator failure. The beam is divided into 8 finite elements and the sensors / actuators are placed at finite element positions 2, 4, 6, and 8 as collocated pairs. The smart structure is modeled using the concepts of piezoelectric theory, Euler‐Bernoulli beam theory, Finite Element Method (FEM) techniques and the state space techniques. Four multi‐variable state‐space models of the smart structure plant are obtained when there is a failure of one of the four actuators to function. The effect of failure of one of the piezo actuators to function during the vibration of the beam is observed. The tip displacements, open and closed loop responses with and without the controller are observed. For all of these models, a common stabilizing state feedback gain F is obtained. A robust decentralized fast output sampling feedback gain L which realizes this state feedback gain is obtained using the LMI approach. In this designed control law, the control inputs to each actuator of the multi‐model representation of the smart structure is a function of the output of that corresponding sensor only and the gain matrix has got all off‐diagonal terms zero and this makes the control design a robust decentralized one. Then, the performance of the designed smart system is evaluated for Active Vibration Control (AVC). The robust decentralized FOS controller obtained by the designed method requires only constant gains and hence may be easier to implement in real time.  相似文献   

5.
Structural oscillation of flexible robot manipulators would severely hamper their operation accuracy and precision. This article presents an integrated distributed sensor and active distributed vibration actuator design for elastic or flexible robot structures. The proposed distributed sensor and actuator is a layer, or multilayer of piezoelectric material directly attached on the flexible component needed to be monitored and controlled. The integrated piezoelectric sensor/actuator can monitor the oscillation as well as actively and directly constrain the undesirable oscillation of the flexible robot manipulators by direct/converse piezoelectric effects, respectively. A general theory on the distributed sensing and active vibration control using the piezoelectric elements is first proposed. An equivalent finite element formulation is also developed. A physical model with distributed sensor/actuator is tested in laboratory; and a finite element model with the piezoelectric actuator is simulated. The distributed sensing and control effectiveness are studied.  相似文献   

6.
7.
压电复合梁高阶有限元模型与主动振动控制研究   总被引:2,自引:1,他引:1  
大型柔性空间结构的振动控制问题引起了广泛的关注.压电材料以其低质量、宽频带和适应性强等特点,非常适合于柔性空间结构的振动控制.本文针对上下表面粘贴有分布式压电传感器和作动器的智能层梁结构,提出了一种考虑压电材料对结构质量、刚度影响的高阶有限元模型.考虑到空间结构可能承受较大的热载荷,在模型中计及了压电材料的热电耦合效应.采用常增益负反馈控制方法、常增益速度负反馈控制方法、Lyapunov反馈控制方法和线性二次型调节器方法(LQR)设计主动控制器,实现了智能层梁结构脉冲激励下的振动主动控制.仿真结果表明,LQR方法更能有效的实现结构振动控制,并且具有更低的作动器峰值电压,但不能消除热载荷引起的结构静变形.  相似文献   

8.
This paper presents an active damping control approach applied to piezoelectric actuators attached to flexible linkages of a planar parallel manipulator for the purpose of attenuation of unwanted mechanical vibrations. Lightweight linkages of parallel manipulators deform under high acceleration and deceleration, inducing unwanted vibration of linkages. Such vibration must be damped quickly to reduce settling time of the manipulator platform position and orientation. An integrated control system for a parallel manipulator is proposed to achieve precise path tracking of the platform while damping the undesirable manipulator linkage vibration. The proposed control system consists of a PD feedback control scheme for rigid body motion of the platform, and a linear velocity feedback control scheme applied to piezoelectric actuators to damp unwanted linkage vibrations. In this paper, we apply the proposed vibration suppression algorithm to two different types of piezoelectric actuators and evaluate their respective performances. The two piezoelectric actuators are (i) a PVDF layer applied to the flexible linkage and (ii) PZT actuator segments also applied to the linkage. Simulation results show that both piezoelectric actuators achieve good performance in vibration attenuation of the planar parallel manipulator. The dynamics of the planar parallel platform are selected such that the linkages have considerable flexibility, to better exhibit the effects of the vibration damping control system proposed.  相似文献   

9.
Active vibration control is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self‐controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system's structural response. This work features the modeling and design of a Periodic Output Feedback (POF) control technique for the vibration control of a smart flexible cantilever beam system for a Single Input Single Output case. A POF controller is designed for the beam by bonding patches of piezoelectric layer as sensor/actuator to the master structure at different locations along the length of the beam. The entire structure is modeled in state space form using the Finite Element Method by dividing the structure into 3, 4, 5 elements, thus giving rise to three types of systems, viz., system 1 (beam divided into 3 finite elements), system 2 (4 finite elements), system 3 (5 finite elements). POF controllers are designed for the above three types of systems for different sensor/actuator locations along the length of the beam by retaining the first two vibratory modes. The smart cantilever beam model is developed using the concept of piezoelectric bonding and Euler‐Bernouli theory principles. The effect of placing the sensor/actuator at various locations along the length of the beam for all the three types of systems considered is observed and the conclusions are drawn for the best performance and for the smallest magnitude of the control input required to control the vibrations of the beam. The tip displacements with the controller is obtained. Performance of the system is also observed by retaining the first 3 vibratory modes and the conclusions are drawn.  相似文献   

10.
This paper focuses on an identification technique based on genetic algorithms (GAs) with application to rectangular flexible plate systems for active vibration control. A real coded GA with a new truncation-based selection strategy of individuals is developed, to allow fast convergence to the global optimum. A simulation environment characterizing the dynamic behavior of a flexible rectangular plate system is developed using the central finite difference (FD) techniques. The plate thus developed is excited by a uniformly distributed random disturbance and the input–output data of the system acquired is used for black-box modeling the system with the GA optimization using an autoregressive model structure. Model validity tests based on statistical measures and output prediction are carried out. The prediction capability of the model is further examined with unseen data. It is demonstrated that the GA gives faster convergence to an optimum solution and the model obtained characterizes the dynamic system behavior of the system well.  相似文献   

11.
In this paper, two approaches, namely active disturbance rejection control (ADRC) and Lyapunov redesign, are utilised to stabilise the vibration of a boundary-controlled flexible rectangular plate in the presence of exogenous disturbances. Based on ADRC, an estimation/cancellation strategy is applied where disturbance is estimated online by an extended state observer (ESO) and cancelled by injecting the output of ESO into the feedback loop. By the Lyapunov redesign, on the other hand, the control law intended for a nominal system is redesigned by adding a (discontinuous) control component that makes the system robust to large uncertainties. Both control algorithms are designed directly based on partial differential equation model of the plate so that spillover instabilities that are a result of model truncation are avoided. The established control schemes are able to stabilise the plate vibration by actuating and sensing only along the plate boundary while accounting for the dynamical effects of Gaussian curvature integral, in-plane membrane force and actuator mass. The stability of each control approach is proven using Lyapunov analysis. The efficacy of each proposed control is illustrated by simulation results.  相似文献   

12.
崔萌  王鑫  邓超 《控制与决策》2023,38(5):1303-1311
针对一类线性多智能体系统,研究其在网络间歇性拒绝服务攻击下的最优同步控制问题.首先,在时变非对称通讯网络拓扑结构下,提出一种弹性最优协同容错控制策略,并优化多智能体的合作二次性能指标,然后证明全局跟踪误差在出现执行器故障和网络攻击时仍然渐进收敛.进一步,当考虑多智能体子系统模型参数未知,同时系统发生执行器故障的情况下,提出利用局部系统状态和输入信息的自学习迭代算法求解代数Riccati方程,计算子系统的反馈控制器增益,实现弹性协同容错控制目标.最后,通过Chua电路网络仿真算例验证所提出的控制方法的有效性.  相似文献   

13.
Wiper blade of automobile is among those types of flexible system that is required to be operated in quite high velocity to be efficient in high load conditions. This causes some annoying noise and deteriorated vision for occupants. The modeling and control of vibration and low-frequency noise of an automobile wiper blade using soft computing techniques are focused in this study. The flexible vibration and noise model of wiper system are estimated using artificial intelligence system identification approach. A PD-type fuzzy logic controller and a PI-type fuzzy logic controller are combined in cascade with active force control (AFC)-based iterative learning (IL). A multi-objective genetic algorithm is also used to determine the scaling factors of the inputs and outputs of the PID-FLC as well as AFC-based IL gains. The results from the proposed controller namely fuzzy force learning (FFL) are compared with those of a conventional lead–lag-type controller and the wiper bang–bang input. Designing controllers based on classical methods could become tedious, especially for systems with high-order model. In contrast, FFL controller design requires only tuning of some scaling factors in the control loop and hence is much simpler and efficient than classical design methods.  相似文献   

14.
Structural oscillation of lightweight robot arms can degrade the accuracy and precision of a robot's high-demanding performance. This paper is the second of two on vibration control of elastic or flexible robot structure. The proposed electromechanical device has both sensing and control capabilities. Effects of active damping treatment on elastic robot arms are discussed. The proposed active distributed sensor and controller is a layer, or multi-layer, of piezoelectric polymer directly attached to the flexible component which is required to be monitored and controlled. By utilizing direct and converse piezoelectric characteristics, respectively, the integrated piezeoelectric sensor/controller can monitor the vibration due to induced mechanical stress/strain in the polymer; and it can also actively and directly constrain the undesirable vibration of flexible component by injecting high voltages. Experimental results and finite element simulations of the electromechanical sensor/actuator are presented and discussed.  相似文献   

15.
针对压电加筋壁板结构多模态主动控制时存在振动模型和外界干扰难以确定等问题, 提出一种不依赖结构数学模型的多模态自抗扰振动控制方法. 首先,采用多回路的扩张状态观测器实时估计其他模态的输出叠加、输入耦合、高次谐波以及外界激励等组成的集总干扰, 并将估计值通过前馈补偿的方式消除干扰对整个控制系统的影响. 然后, 针对每个控制模态设计独立的PD反馈控制器. 为了提高整个控制系统的振动抑制性能, 结合多模态振动控制的特点, 引入一种具有实际意义的性能指标函数. 并基于此性能函数, 提出基于logistic映射的自抗扰振动控制器参数自动优化方法. 最后, 利用dSPACE半实物仿真平台, 搭建了四面固支壁板结构的压电振动控制实验系统.最后, 多模态干扰激励的实验结果表明了所提的多模态自抗扰振动主动控制方法的有效性.  相似文献   

16.
This paper proposes a composite approach to implementing attitude tracking and active vibration control of a large space flexible truss system. The system dynamic model is based on Hamilton's principle and discretized using the finite difference method. A nonlinear attitude controller for position tracking is developed based on the input‐output linearization of the discretized system, which can effectively improve system performance compared with a traditional proportional‐differential feedback controller. A taut cable actuator scheme is presented to suppress tip vibration because the mechanical model is a large large‐span spatial structure; furthermore, because the cable has the feature of unilateral input saturation constraint, which can provide only a pulling force, a nonlinear quadratic regulator controller is developed by introducing a piecewise nonquadratic cost function to suppress the vibration of the flexible structure. To investigate the factors that influence the damping effects of the cable, the parametrically excited instability of a cable under 2 supports is analyzed. Simulation results illustrate that the proposed attitude controller can implement the task of position tracking, and the vibration suppression control law is shown to be optimal for functional performance with input saturation.  相似文献   

17.
利用压电材料的正逆压电效应,实现了移动质量激励悬臂梁振动主动控制;建立了压电元传感方程和作动方程,进一步将其转化为状态空间模型中的状态方程和输出方程;设计了基于线性二次型最优控制(LQR)策略的振动主动控制器,以TMS320VC33 DSP芯片为核心组建了相应的硬件电路。实验结果表明:采用压电自感作动器可很好地抑制移动质量激励引起的悬臂梁振动。  相似文献   

18.
基于压电陶瓷的柔性机器人主动抑振控制策略研究   总被引:1,自引:0,他引:1  
柔性机器人因其轻质、高效、低能耗等优点已被广泛应用于航空航天,工业制造等诸多领域。然而,柔性机构易产生弯曲变形,引起系统振动而大大降低机器人的工作精度。为提高柔性机器人的工作性能,多种抑振策略得以研究与应用。提出了基于压电陶瓷(PZT)的柔性机器人振动主动抑制策略。其中,PZT传感器和PZT制动器分别被用来检测和抑制柔性臂的振动。本文构建了基于PZT材料的单自由度柔性机械臂的理论模型,并获得了传感电压与制动电压的传递函数。设计了一个可变控制方案的抑振器以抑制系统在不同频率下的振动。在COMSOL中进行仿真,获得了系统的抑振率。根据仿真结果显示,柔性臂在前三阶振动下,臂的末端位移分别得到了57.04%,57.76%与58.96%的抑制;系统的动能得到了57.95%,71.19%与87.81%的抑制。  相似文献   

19.
基于免疫反馈算法的缝纫设备振动控制研究   总被引:1,自引:0,他引:1  
为降低缝纫设备缝纫时产生的振动对缝纫性能的影响,开发了一种缝纫设备振动主动控制系统。该系统中的执行机构采用超磁致执行器,能满足振动控制精度和频响的要求。在完成系统的总体设计后,研究了超磁致伸缩执行器工作原理以及缝纫设备机身的振动特性,并分别对他们进行建模。设计了一种基于人工免疫原理的免疫反馈控制器,采用MATLAB环境中的Simulink工具对控制系统进行建模仿真,并在工业缝纫机上进行了现场实验测试,结果证明该系统能很好地抑制缝纫时引起的机身振动。  相似文献   

20.
In this paper,a robust nonlinear free vibration control design using an operator based robust right coprime factorization approach is considered for a flexible plate with unknown input nonlinearity.With considering the effect of unknown input nonlinearity from the piezoelectric actuator,operator based controllers are designed to guarantee the robust stability of the nonlinear free vibration control system.Simultaneously,for ensuring the desired tracking performance and reducing the effect of unknown input nonlinearity,operator based tracking compensator and estimation structure are given,respectively.Finally,both simulation and experimental results are shown to verify the effectiveness of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号