首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced Fuzzy System Models With Improved Fuzzy Clustering Algorithm   总被引:2,自引:0,他引:2  
Although traditional fuzzy models have proven to have high capacity of approximating the real-world systems, they have some challenges, such as computational complexity, optimization problems, subjectivity, etc. In order to solve some of these problems, this paper proposes a new fuzzy system modeling approach based on improved fuzzy functions to model systems with continuous output variable. The new modeling approach introduces three features: i) an improved fuzzy clustering (IFC) algorithm, ii) a new structure identification algorithm, and iii) a nonparametric inference engine. The IFC algorithm yields simultaneous estimates of parameters of c-regression models, together with fuzzy c-partitioning of the data, to calculate improved membership values with a new membership function. The structure identification of the new approach utilizes IFC, instead of standard fuzzy c-means clustering algorithm, to fuzzy partition the data, and it uses improved membership values as additional input variables along with the original scalar input variables for two different choices of regression methods: least squares estimation or support vector regression, to determine ldquofuzzy functionsrdquo for each cluster. With novel IFC, one could learn the system behavior more accurately compared to other FSM models. The nonparametric inference engine is a new approach, which uses the alike -nearest neighbor method for reasoning. Empirical comparisons indicate that the proposed approach yields comparable or better accuracy than fuzzy or neuro-fuzzy models based on fuzzy rules bases, as well as other soft computing methods.  相似文献   

2.
“Fuzzy Functions” are proposed to be determined by the least squares estimation (LSE) technique for the development of fuzzy system models. These functions, “Fuzzy Functions with LSE” are proposed as alternate representation and reasoning schemas to the fuzzy rule base approaches. These “Fuzzy Functions” can be more easily obtained and implemented by those who are not familiar with an in-depth knowledge of fuzzy theory. Working knowledge of a fuzzy clustering algorithm such as FCM or its variations would be sufficient to obtain membership values of input vectors. The membership values together with scalar input variables are then used by the LSE technique to determine “Fuzzy Functions” for each cluster identified by FCM. These functions are different from “Fuzzy Rule Base” approaches as well as “Fuzzy Regression” approaches. Various transformations of the membership values are included as new variables in addition to original selected scalar input variables; and at times, a logistic transformation of non-scalar original selected input variables may also be included as a new variable. A comparison of “Fuzzy Functions-LSE” with Ordinary Least Squares Estimation (OLSE)” approach show that “Fuzzy Function-LSE” provide better results in the order of 10% or better with respect to RMSE measure for both training and test cases of data sets.  相似文献   

3.
A new concept and method of imposing imprecise (fuzzy) input and output data upon the conventional linear regression model is proposed. Under the considerations of fuzzy parameters and fuzzy arithmetic operations (fuzzy addition and multiplication), we propose a fuzzy linear regression model which has the similar form as that of conventional one. We conduct the h-level (conventional) linear regression models of fuzzy linear regression model for the sake of invoking the statistical techniques in (conventional) linear regression analysis for real-valued data. In order to determine the sign (nonnegativity or nonpositivity) of fuzzy parameters, we perform the statistical testing hypotheses and evaluate the confidence intervals. Using the least squares estimators obtained from the h-level linear regression models, we can construct the membership functions of fuzzy least squares estimators via the form of “Resolution Identity” which is well-known in fuzzy sets theory. In order to obtain the membership degree of any given estimate taken from the fuzzy least squares estimator, optimization problems have to be solved. We also provide two computational procedures to deal with those optimization problems.  相似文献   

4.
The new concept and method of imposing imprecise (fuzzy) input and output data upon the conventional linear regression model is proposed in this paper. We introduce the fuzzy scalar (inner) product to formulate the fuzzy linear regression model. In order to invoke the conventional approach of linear regression analysis for real-valued data, we transact the α-level linear regression models of the fuzzy linear regression model. We construct the membership functions of fuzzy least squares estimators via the form of “Resolution Identity” which is a well-known formula in fuzzy sets theory. In order to obtain the membership value of any given least squares estimate taken from the fuzzy least squares estimator, we transform the original problem into the optimization problems. We also provide two computational procedures to solve the optimization problems.  相似文献   

5.
Fuzzy functions with support vector machines   总被引:1,自引:0,他引:1  
A new fuzzy system modeling (FSM) approach that identifies the fuzzy functions using support vector machines (SVM) is proposed. This new approach is structurally different from the fuzzy rule base approaches and fuzzy regression methods. It is a new alternate version of the earlier FSM with fuzzy functions approaches. SVM is applied to determine the support vectors for each fuzzy cluster obtained by fuzzy c-means (FCM) clustering algorithm. Original input variables, the membership values obtained from the FCM together with their transformations form a new augmented set of input variables. The performance of the proposed system modeling approach is compared to previous fuzzy functions approaches, standard SVM, LSE methods using an artificial sparse dataset and a real-life non-sparse dataset. The results indicate that the proposed fuzzy functions with support vector machines approach is a feasible and stable method for regression problems and results in higher performances than the classical statistical methods.  相似文献   

6.
PieceWise AutoRegressive eXogenous (PWARX) models represent one of the broad classes of the hybrid dynamical systems (HDS). Among many classes of HDS, PWARX model used as an attractive modeling structure due to its equivalence to other classes. This paper presents a novel fuzzy distance weight matrix based parameter identification method for PWARX model. In the first phase of the proposed method estimation for the number of affine submodels present in the HDS is proposed using fuzzy clustering validation based algorithm. For the given set of input–output data points generated by predefined PWARX model fuzzy c-means (FCM) clustering procedure is used to classify the data set according to its affine submodels. The fuzzy distance weight matrix based weighted least squares (WLS) algorithm is proposed to identify the parameters for each PWARX submodel, which minimizes the effect of noise and classification error. In the final phase, fuzzy validity function based model selection method is applied to validate the identified PWARX model. The effectiveness of the proposed method is demonstrated using three benchmark examples. Simulation experiments show validation of the proposed method.  相似文献   

7.
The method for obtaining the fuzzy least squares estimators with the help of the extension principle in fuzzy sets theory is proposed. The membership functions of fuzzy least squares estimators will be constructed according to the usual least squares estimators. In order to obtain the membership value of any given value taken from the fuzzy least squares estimator, optimization problems have to be solved. We also provide the methodology for evaluating the predicted fuzzy output from the given fuzzy input data.  相似文献   

8.
《Information Sciences》2005,169(3-4):205-226
We present a method to identify a fuzzy model from data by using the fuzzy Naive Bayes and a real-valued genetic algorithm. The identification of a fuzzy model is comprised of the extraction of “if–then” rules that is followed by the estimation of their parameters. The involved parameters include those which determine the membership function of fuzzy sets and the certainty factors of fuzzy if–then rules. In our method, as long as the fuzzy partition in the input–output space is given, the certainty factor of each rule is computed with the fuzzy conditional probability of the consequent conditioned on the antecedent by using the fuzzy Naive Bayes, which is a generalization of Naive Bayes. The fuzzy model involves the rules characterized by the highest values of certainty factors. The certainty factor of each rule is the fuzzy conditional probability, and it reflects the inner relationship between the antecedent and the consequent. In order to improve the accuracy of the fuzzy model, the real-valued genetic algorithm is incorporated into our identification process. This process concerns the optimization of the membership functions occurring in the rules. We just involve the parameters of membership function of the fuzzy sets into the real-valued genetic algorithm, since the certainty factor of each rule can be computed automatically. The performance of the model is shown for the backing-truck problem and the prediction of Mackey–Glass time series.  相似文献   

9.
This paper focuses on the parameter estimation problems of output error autoregressive systems and output error autoregressive moving average systems (i.e., the Box–Jenkins systems). Two recursive least squares parameter estimation algorithms are proposed by using the data filtering technique and the auxiliary model identification idea. The key is to use a linear filter to filter the input–output data. The proposed algorithms can identify the parameters of the system models and the noise models interactively and can generate more accurate parameter estimates than the auxiliary model based recursive least squares algorithms. Two examples are given to test the proposed algorithms.  相似文献   

10.
This paper proposes a fuzzy model for predicting the complex changes of offshore beach topographies under high waves. The fuzzy model was developed through the integration of autoregressive exogenous input models, a Takagi–Sugeno fuzzy model, subtractive clustering algorithms, and a weighted least squares estimation technique. The height, the period of ocean wave signals, and the initial cross-shore bar shapes are used as input signals while the topographic features of the bar shape profiles are adopted as the output signals. To demonstrate the effectiveness of the proposed fuzzy model, a variety of laboratory experiments at 1/50th scale were conducted and compared to the CSHORE mathematical model. The experimental studies show that the proposed fuzzy model is effective in predicting the topographic features of beach profiles and performs better than the CSHORE model.  相似文献   

11.
Fuzzy nonparametric regression based on local linear smoothing technique   总被引:1,自引:0,他引:1  
In a great deal of literature on fuzzy regression analysis, most of research has focused on some predefined parametric forms of fuzzy regression relationships, especially on the fuzzy linear regression models. In many practical situations, it may be unrealistic to predetermine a fuzzy parametric regression relationship. In this paper, a fuzzy nonparametric model with crisp input and LR fuzzy output is considered and, based on the distance measure for fuzzy numbers suggested by Diamond [P. Diamond, Fuzzy least squares, Information Sciences 46 (1988) 141-157], the local linear smoothing technique in statistics with the cross-validation procedure for selecting the optimal value of the smoothing parameter is fuzzified to fit this model. Some simulation experiments are conducted to examine the performance of the proposed method and three real-world datasets are analyzed to illustrate the application of the proposed method. The results demonstrate that the proposed method works quite well not only in producing satisfactory estimate of the fuzzy regression function, but also in reducing the boundary effect significantly.  相似文献   

12.
This work proposes a unified neurofuzzy modelling scheme. To begin with, the initial fuzzy base construction method is based on fuzzy clustering utilising a Gaussian mixture model (GMM) combined with the analysis of covariance (ANOVA) decomposition in order to obtain more compact univariate and bivariate membership functions over the subspaces of the input features. The mean and covariance of the Gaussian membership functions are found by the expectation maximisation (EM) algorithm with the merit of revealing the underlying density distribution of system inputs. The resultant set of membership functions forms the basis of the generalised fuzzy model (GFM) inference engine. The model structure and parameters of this neurofuzzy model are identified via the supervised subspace orthogonal least square (OLS) learning. Finally, instead of providing deterministic class label as model output by convention, a logistic regression model is applied to present the classifier’s output, in which the sigmoid type of logistic transfer function scales the outputs of the neurofuzzy model to the class probability. Experimental validation results are presented to demonstrate the effectiveness of the proposed neurofuzzy modelling scheme.  相似文献   

13.
In this article, a wavelet neural network (WNN) model is proposed for approximating arbitrary nonlinear functions. Our WNN model structure comes from the idea of adaptive neuro-fuzzy inference system (ANFIS) which is used for obtaining fuzzy rule base from the input–output data of an unknown function. The WNN model which is called in this study as adaptive wavelet network (AWN) consists of wavelet scaling functions in its processing units whereas in an ANFIS, mostly Gaussian-type membership functions are used for a function approximation. We present to train an AWN by a hybrid-learning method containing least square estimation (LSE) with gradient-based optimization algorithm to obtain the optimal translation and dilation parameters of our AWN for model accuracy. Simulation examples are also given to illustrate the effectiveness of the method.  相似文献   

14.
A clonal selection algorithm (CLONALG) inspires from clonal selection principle used to explain the basic features of an adaptive immune response to an antigenic stimulus. It takes place in various scientific applications and it can be also used to determine the membership functions in a fuzzy system. The aim of the study is to adjust the shape of membership functions and a novice aspect of the study is to determine the membership functions. Proposed method has been implemented using a developed CLONALG program for a multiple input–output (MI–O) fuzzy system. In this study, GA and binary particle swarm optimization (BPSO) are used for implementing the proposed method as well and they are compared. It has been shown that using clonal selection algorithm is advantageous for finding optimum values of fuzzy membership functions  相似文献   

15.
In this article, a hybrid learning neuro-fuzzy inference system (HLNFIS) with a new inference mechanism is proposed for system modeling. In the HLNFIS, the incoming signal is fuzzified by the proposed improved Gaussian membership function (IGMF), which is derived from two standard Gaussian functions. With the premise construction with IGMFs, the system inference ability can be upgraded. The fuzzy inference processor, which involves both numerical and linguistic reasoning, is introduced in rule base construction. For effective parameter learning, the hybrid algorithm of random optimization (RO) and least square estimation (LSE) is exploited, where the premise and the consequence parameters of are updated by RO and LSE, respectively. To validate the feasibility and the potential of the proposed approach, three examples of system modeling are conducted. Through experimental results and comparisons the proposed HLNFIS shows excellent performance for complex modeling.  相似文献   

16.
This article is concerned with the design of an adaptive sliding mode control (SMC) for a class of uncertain discrete-time systems using the multi-rate output measurement. The states of the discrete-time systems are assumed to be taken in the multi-rate output measurement by the contamination with measurement noise. The uncertainties are assumed not to satisfy the matching condition, and are expressed in a parameterised form. A least squares estimator (LSE) to take the estimates for the un-measurable states and the uncertainties is designed in a batch form by using the noisy multi-rate output measurement. The proposed adaptive SMC is designed by using the sliding surface expressed as the linear state function and the estimates obtained from the LSE. It is proved that the estimation errors converge to zero as time tends to infinite, and the states of the system are bounded under the action of the proposed adaptive SMC. The effectiveness of the proposed method is indicated through the simulation experiment in a simple system.  相似文献   

17.
This paper presents a novel method of systematically constructing a fuzzy inverse model for general multi-input--single-output (MISO) systems represented with triangular input membership functions, singleton output membership function, and fuzzy-mean defuzzification. The fuzzy inverse model construction method has the ability of uniquely determining the inverse relationship for each input–output pair. It is derived in a straightforward way and the required input variables can be simultaneously obtained by the fuzzy inferencing calculation to realize the desired output value. Simulation examples are provided to demonstrate the effectiveness of the proposed method to find the inverse kinematics solutions for complex multiple degree-of-freedom industrial robot manipulators.   相似文献   

18.
This paper proposes a systematic method to design a multivariable fuzzy logic controller for large-scale nonlinear systems. In designing a fuzzy logic controller, the major task is to determine fuzzy rule bases, membership functions of input/output variables, and input/output scaling factors. In this work, the fuzzy rule base is generated by a rule-generated function, which is based on the negative gradient of a system performance index; the membership functions of isosceles triangle of input/output variables are fixed in the same cardinality and only the input/output scaling factors are generated from a genetic algorithm based on a fitness function. As a result, the searching space of parameters is narrowed down to a small space, the multivariable fuzzy logic controller can quickly constructed, and the fuzzy rules and the scaling factors can easily be determined. The performance of the proposed method is examined by computer simulations on a Puma 560 system and a two-inverted pendulum system  相似文献   

19.
张瑞垚  周平 《自动化学报》2022,48(9):2198-2211
针对非线性强、先验故障知识少、异常工况识别难的污水处理过程监测问题,提出一种基于鲁棒加权模糊c均值(Robust weighted fuzzy c-means, RoW-FCM)聚类与核偏最小二乘(Kernel partial least squares, KPLS)的过程监测方法.首先,针对污水处理过程的高维非线性耦合特性,采用核偏最小二乘对高维输入变量进行降维;其次,针对传统基于最近邻分配的模糊c均值算法对离群点敏感以及存在聚类不平衡簇的问题,提出充分考虑样本间相互关系的基于鲁棒加权模糊c均值聚类算法.通过引入可能性划分矩阵作为权值参数实现不同样本数据的区分加权,提高了离群点数据聚类的鲁棒性,同时引入聚类大小控制参数解决不平衡簇的问题.进一步将基于鲁棒加权模糊c均值算法对核偏最小二乘降维后的得分矩阵进行聚类,利用聚类得到的隶属度矩阵实现异常工况的检测;最后,建立隶属度矩阵与过程变量的回归模型,并利用得到的变量贡献矩阵描述变量对各个簇的解释程度,实现异常工况的识别.数值仿真以及污水处理过程数据实验表明该方法具有更好的鲁棒性能,在异常工况检测和识别上具有较好的效果.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号