首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
试验研究了变形时效对6061铝合金显微组织和时效硬化特性的影响。结果表明,对6061铝合金进行5%~80%轧制变形,时效温度的升高会缩短峰值硬度出现的时间,且变形量越大出现峰值硬度的时间越短;变形量在20%及以上时,6061铝合金的峰值硬度高于T6态的;变形量20%以下时,6061铝合金的峰值硬度低于T6态的。在不同时效温度下,6061铝合金的抗拉强度和屈服强度都会随着变形量增加而增大。当时效温度为180℃时,较小变形量(20%)的6061铝合金的强度和塑性相当于T6态的;40%及以上变形量下6061铝合金的强度和塑性都明显高于T6态的。对6061铝合金进行变形时效处理,在位错强化、析出强化以及晶体缺陷作用下可以获得强度和塑性兼备的6061铝合金材料。  相似文献   

2.
研究了热处理工艺对6061铝合金硬度和电导率的影响。结果表明:固溶处理过程中,随着固溶时间的增加,合金硬度先降低后升高,后又逐渐降低,随着固溶温度的增加,显微硬度值逐渐增大;时效过程中,硬度值随时效时间增加先升高后降低,电导率随时效时间增加逐渐升高并趋于稳定;6061铝合金最佳的热处理制度为540℃固溶4 h+173℃时效11 h,此时合金的硬度值为119.74 HV6,电导率为56%·IACS;对合金电导率影响最大的参数是固溶温度和时效时间,对硬度值影响最大的参数是时效时间。  相似文献   

3.
对喷射成形6061铝合金的热处理工艺进行研究,采用硬度测试、拉伸试验和透射电镜等研究固溶温度、时效温度和时效保温时间对合金显微组织和力学性能的影响规律。结果表明:随固溶温度的升高,合金硬度也随之升高,而其抗拉强度、屈服强度和断后伸长率则先增大后减小;合金硬度、抗拉强度和屈服强度随时效温度的升高先增大后减小,断后伸长率却一直减小;合金硬度、抗拉强度和屈服强度曲线随时效温保温时间的延长呈驼峰状变化,断后伸长率则变化不大,只在17 h时有所增大;喷射成形6061铝合金的最佳热处理工艺为530℃固溶1 h+175℃时效8 h。  相似文献   

4.
通过硬度测试、电导率测试、室温拉伸性能测试和显微组织观察(TEM),研究了7150铝合金在单级时效处理过程中时效温度和时效时间对其合金组织和性能的影响.结果表明,7150铝合金有很强的时效强化效应,时效初期,合金硬度迅速上升;单级时效处理的温度越高,合金达到峰时效所需的时间越短.120℃时效时,28 h合金达到硬度峰值;140℃时效时,合金12 h达到硬度峰值;合金在120℃和140℃时效时,过时效现象不明显;电导率随时效时间的延长而不断上升,时效温度越高,电导率的增长速率越快;120℃峰时效时合金基体内有大量细小相析出,晶界析出相呈连续分布;在120℃进行过时效处理,合金粗大析出相数量明显增加,晶界析出相呈不连续分布,但合金的硬度、抗拉强度和屈服强度下降不大,伸长率有所下降.  相似文献   

5.
通过显微硬度测试、电导率测试、拉伸力学性能测试以及透射电镜观察等研究预时效温度对2519铝合金力学性能和电导率的影响.结果表明:随着预时效温度的升高,2519铝合金到达峰值时效的时间缩短,峰值硬度降低;经135 ℃预时效的合金具有较大的抗拉强度和屈服强度,其强度分别为490和442 MPa,但其伸长率仅为7.0%;经165 ℃预时效的合金具有较好的综合力学性能,其中抗拉强度、屈服强度和伸长率分别为480 MPa、435 MPa和10.5%;当预时效温度大于165 ℃时,合金电导率随预时效温度的升高而升高;当预时效温度小于 165 ℃时,合金电导率随温度的升高逐渐降低.  相似文献   

6.
以汽车车身用6061-T4铝合金为研究对象,利用显微硬度测试、拉伸试验和透射电子显微镜(TEM),研究温变形对汽车车身用6061铝合金自然时效及烤漆硬化的影响。结果表明:温变形后的6061铝合金不会发生明显的自然时效效应,放置8 d的自然时效过程中硬度值保持稳定;对温变形样品分别立即和停放8 d后,实施模拟烤漆(180℃人工时效30 min)温变形后立即进行烤漆,其硬化能力与放置8 d后再进行烤漆样品的无明显差异。合金烤漆后的硬度与温变形温度有关,在160~230℃范围内,随着温变形温度上升,硬度上升;而经250℃拉伸后,烤漆硬度出现下降,230℃为最适宜温度,此条件下成形后的6061铝合金经烤漆过程后,硬度最高值可达到114HV。  相似文献   

7.
对时效硬化AA6061铝合金分别进行过冷轧制(CR)、室温轧制(RTR)后的显微组织与力学性能进行研究。通过差热分析(DSC)、电子背散射衍射技术(EBSD)、透射电镜(TEM)、维氏硬度测试、拉伸测试等分析手段对轧制态和时效态的合金进行分析。结果表明:AA6061铝合金经CR处理后,第二相析出序列发生改变。合金在过冷轧制中形成大量位错,并发生缠结形成超细晶粒结构,使得峰值时效下第二相粒子在铝基体中更加细小弥散分布。经过冷轧制后轧制态和峰值时效态下的AA6061铝合金强度和塑性较室温轧制态合金的都有很大提高。  相似文献   

8.
研究了时效工艺对轨道交通用Al-Mg-Si系铝合金显微硬度、电导率、力学性能的影响,并分析了合金的显微组织和拉伸断口形貌。研究结果表明:不同时效温度下,合金强度和硬度达到峰值的时间各不同,时效温度越高,合金强度和硬度达到峰值的时间则越短;随着时效时间的延长,合金的强度和硬度均呈先增大后降低的趋势。在不同的时效工艺下,合金的电导率均随时效时间的延长而增大,呈先快速增大后缓慢增大的趋势;时效温度为150~210℃时,合金的电导率随时效温度的升高而增大。时效工艺为170℃×10 h时,合金组织内弥散分布的强化相质点会对位错起到阻碍作用,使合金获得较高强度和硬度,但断口处出现大量韧窝,表现为韧性断裂。轨道交通用Al-Mg-Si系铝合金经540℃×2 h固溶和170℃×10 h时效处理后,其硬度为90.7 HV,电导率为56.5%IACS,抗拉强度为237 MPa,屈服强度为217 MPa,满足客户要求。  相似文献   

9.
《铸造技术》2017,(9):2133-2136
研究了不同热处理和变形工艺对铝合金组织、硬度和电导率的影响。结果表明,时效温度为170℃和190℃时铝合金的硬度峰值时间相对150℃有所提前;随着时效时间延长,变形后铝合金的电导率表现为开始阶段逐渐升高而随后保持稳定;不同时效时间下合金的电导率都大于冷变形态合金;适宜的均匀化退火温度为530℃,可以有效改善铝合金的偏析,且能使粗大的第二相回溶至基体而不产生过烧现象;铝合金适宜的固溶制度为500℃保温1 h,适宜的时效热处理制度为170℃保温7 h。  相似文献   

10.
研究了固溶温度、时效时间、时效温度对Al-Cu-Mn铸造铝合金微观组织和力学性能的影响。结果表明,合金经过530℃×14 h固溶处理后,晶界残留相最少;时效温度为170℃时,合金的硬度(HBW)随时效时间延长先增大后减小,在6h时达到峰值(145);在不同温度下时效6 h后,合金的抗拉强度、硬度(HBW)随时效温度的上升先增大后减小,均在170℃时达到峰值,为480 MPa和145,伸长率随时效温度的升高而迅速下降。  相似文献   

11.
通过导电率、硬度测试方法研究了Al-Er-Cu合金在等时时效与等温时效过程中的性能变化规律,利用透射电镜(TEM)、能谱分析(EDS)观察了合金析出相的析出及生长规律。结果表明:随着时效温度升高,整体上同一合金的导电率与硬度峰值出现时间均提前;300 ℃时效时,Al-Er-0.22Cu合金已经析出大量纳米级弥散相,析出强化了合金强度,提高了导电率,时效2 h时达到导电率峰值60.15%IACS,10 h达到硬度峰值43.1 HV0.05,Al-Er-0.22Cu合金在拥有高导电率的同时保持了较好的硬度。  相似文献   

12.
采用金相显微镜、透射电镜和拉伸试验机等研究了固溶时间、时效温度和时效时间对绿色建筑用6061铝合金模板显微组织和力学性能的影响.结果 表明,随着固溶时间的延长、时效温度的升高或者时效时间的延长,6061铝合金的抗拉强度、屈服强度和硬度会先增大后减小,断后伸长率则先减小后增大;当535℃/60 min固溶及180℃/7 ...  相似文献   

13.
利用加热炉、硬度计、拉伸试验机等设备研究了液态模锻6061铝合金在单级时效、双级时效等不同时效制度下的力学性能。结果表明:同单级时效相比,双级时效处理对合金的硬度影响不大。双级时效条件下,预时效和终时效温度顺序对液态模锻6061铝合金合金的抗拉强度影响不大,主要影响合金的屈服强度和伸长率;终时效温度越高合金屈服强度越高,强化速率越快,伸长率下降也越大。 液态模锻6061 铝合金在560 ℃固溶5 h后经200 ℃预时效1 h,185 ℃终时效3.5 h 时具有较好的力学性能,抗拉强度达到362.2 MPa,屈服强度达到311.5 MPa,伸长率为12.1%。  相似文献   

14.
回归再时效(RRA)处理对7050铝合金的影响   总被引:25,自引:1,他引:24  
采用TEM和维氏硬度计研究了回归再时效 (RRA)处理对 70 5 0铝合金的影响 ,对处理后合金试样的强度和伸长率进行了测试 ,并对试样断口在SEM下进行了观察。研究发现 ,当回归温度为 45 3K ,在回归曲线上 ,随着回归时间的延长 ,硬度值下降 ,在 36 0 0s达到硬度最低值 ;继续延长回归时间 ,硬度值上升 ,在 72 0 0s硬度值达到最大值 ,随后硬度值下降 ;在RRA曲线上 ,随着回归时间的延长 ,硬度值上升 ,在 36 0 0s达到硬度峰 ,随后硬度值下降。当回归温度为 473K时 ,虽然与在 45 3K回归和再时效行为的趋势相同 ,但在回归曲线上 ,硬度的谷值和峰值时间都提前 ,并且硬度峰值稍微降低 ;在RRA曲线上 ,硬度峰提前。TEM研究结果表明 ,70 5 0铝合金在T6状态的硬化来自GP区。在回归处理过程中硬度谷值的产生与GP区的回溶有关 ,而峰值的产生与 η′和 η相的沉淀析出有关 ;在RRA处理过程中 ,峰值的产生与 η′和 η相的沉淀析出有关。回归温度对 70 5 0铝合金的影响与GP区、η′和 η相形核和时效沉淀动力学受回归温度影响有关。经过RRA(393K× 2 2h + 45 3K× 1h + 393K× 30h)处理后合金要比T745 1处理后的强度高 19% ,而伸长率稍微降低 ,经过RRA(393K× 2 2h + 473K× 5min + 393K× 30h)处理后合金要比T745 1处理后的强  相似文献   

15.
通过扫描电镜和透射电镜研究焊后热处理时间和温度对6061铝合金双脉冲MIG焊接接头显微组织的影响。采用硬度测试和拉伸实验研究热处理时间和温度对6061铝合金双脉冲MIG焊接接头力学性能的影响。结果显示,时效时间和温度对显微硬度的影响较大。增加时效温度有助于缩短峰值时效时间。未时效状态下,焊接接头内部存在许多位错和少量析出相组织。随着时效温度和时间的增加,接头处位错密度逐渐降低,同时,沉淀相逐渐析出并长大。当时效温度增加至200°C时,焊接接头处析出较大的Q'相,此时焊合接头的硬度达到最大。  相似文献   

16.
《塑性工程学报》2013,(4):92-98
采用硬度测试、电子显微分析方法(SEM、TEM)和能谱分析(EDS)等手段,系统研究均匀化温度和保温时间对6061铝合金铸锭微观组织及力学性能的变化规律。结果表明,当均匀化退火条件为550℃/12h时,第二相的数量、分布和尺寸达到最佳,合金硬度也相对最高。均匀化退火过程中的扩散动力学分析表明,均匀化所需时间随温度的增加和枝晶间距的减小而缩短。动力学分析所得结果与试验均匀化处理制度基本吻合。  相似文献   

17.
研究了热处理工艺对6082铝合金力学性能的影响。结果表明,随着固溶温度的升高,合金的抗拉强度、硬度也随之升高,然后趋于平缓;断后伸长率先下降,随后升高。固溶时间对合金的抗拉强度、硬度以及断后伸长率影响较小。此外,随着时效温度的上升,合金的抗拉强度、硬度先上升至峰值,再略微下降;断后伸长率先下降至较低值,然后略微上升。合金在170℃时效后,其抗拉强度达到最高,为368 MPa,硬度达到115 HB。随着时效时间的延长,合金的抗拉强度、硬度以及断后伸长率变化较小。最后得出,6082铝合金在530~570℃固溶处理2~4 h,冷水冷却后,在170~190℃时效6~8 h,可获得最佳的综合力学性能,其抗拉强度可达360 MPa以上,断后伸长率大于12%。  相似文献   

18.
用挤压铸造方法制备Mullite/Al—Cu复合材料及其基体合金。用硬度测试(HB)、差示扫描量热仪(DSC)和透射电镜(TEM)等手段,研究了温度和溶质原子浓度对复合材料及其基体合金时效行为的影响。结果表明:复合材料和基体合金具有相似的时效硬化曲线及相同的时效析出序列,随时效温度的升高,峰值硬度降低、析出过程加快;溶质浓度升高,峰值硬度升高、析出过程同样得到加快;纤维除了能明显提高Al—Cu合金的时效硬度外,还能加速其时效析出过程,但对GP区的形成具有明显的抑制作用,而对θ相的析出影响不大。  相似文献   

19.
为了研究Sn元素对6061铝合金的作用,将固溶与时效热处理后含Sn的铝合金与普通铝合金的组织与性能进行比较。结果表明:Sn元素对6061铝合金的微观形貌有一定影响,对其再结晶晶粒的大小与成分影响不大;人工时效与预时效处理均可相应缩短Sn铝合金硬度达到峰值的时间;时效后含Sn的铝合金的硬度有明显提升,综合性能也得到了相应提高。  相似文献   

20.
采用差示扫描量热法(DSC)对SiC_p/6061复合材料和6061合金时效析出动力学进行研究,并结合Avrami-Johnson-Mehl方法分析SiC_p的加入对6061铝合金时效析出动力学的影响,计算出连续升温过程中各亚稳相的析出动力学参数。结果表明:SiC_p抑制6061铝合金GP区的形成,促进β″相、β′相和Q′相、β相和Q相的析出。计算各相析出动力学表达式及TTT曲线,利用硬度测试实验对计算结果进行对比验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号