首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental infrastructure investment (EII) is an important environmental policy instrument on responding to greenhouse gas (GHG) emission and air pollution. This paper employs an improved stochastic impact by regression on population, affluence and technology (STRIPAT) model by using panel data from 30 Chinese provinces and municipalities for the period of 2003–2015 to investigate the effect of EII on CO2 emissions, SO2 emissions, and PM2.5 pollution. The results indicate that EII has a positive and significant effect on mitigating CO2 emission. However, the effect of EII on SO2 emission fluctuated although it still contributes to the reduction of PM2.5 pollution through technology innovations. Energy intensity has the largest impact on GHG emissions and air pollution, followed by GDP per capita and industrial structure. In addition, the effect of EII on environmental issues varies in different regions. Such findings suggest that policies on EII should be region-specific so that more appropriate mitigation policies can be raised by considering the local realities.  相似文献   

2.
An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and polices. In major part reducing CO2 as well as the other greenhouse gas emissions in Kazakstan can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment.

The mitigation analysis addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan's CO2 emissions will not exceed their 1990 level until 2005. The potential for CO2 emission reduction is estimated to be about 11% of the baseline emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy, and further expansion in the use of hydro energy based on small hydroelectric power plants.  相似文献   


3.
With the approach of the year 2012, a new round of international negotiations has energized the entire climate change community. With this, analyses on sector-based emissions reduction and mitigation options will provide the necessary information to form the debate. In order to assess the CO2 emissions reduction potential of China's electricity sector, this research employs three scenarios based on the “long-range energy alternative planning system” (LEAP) model to simulate the different development paths in this sector. The baseline scenario, the current policy scenario, and the new policy scenario seek to gradually increase the extent of industrial restructuring and technical advancement. Results imply that energy consumption and CO2 emission in China's electricity sector will rise rapidly in all scenarios until 2030—triple or quadruple the 2000 level; however, through structural adjustment in China's electricity sector, and through implementing technical mitigation measures, various degrees of abatement can be achieved. These reductions range from 85 to 350 million tons CO2 per year—figures that correspond to different degrees of cost and investment. Demand side management and circulating fluidized bed combustion (CFBC) (ranked in order) are employed prior to use to realize emissions reduction, followed by supercritical plants and the renovation of conventional thermal power plants. In the long term, nuclear and hydropower will play the dominant role in contributing to emissions reduction. It is also suggested that a “self-restraint” reduction commitment should be employed to help contribute to the reduction of emission intensity, an avenue that is more practical for China in light of its current development phase. Setting the year 2000 as the base year, the intensity reduction target could possibly range from 4.2% to 19.4%, dependent on the implementation effectiveness of various mitigation options.  相似文献   

4.
China achieved the reduction of CO2 intensity of GDP by 45% compared with 2005 at the end of 2017, realizing the commitment at 2009 Copenhagen Conference on emissions reduction 3 years ahead of time. In future implementation of the “13th Five-Year Plan (FYP),” with the decline of economic growth rate, decrease of energy consumption elasticity and optimization of energy structure, the CO2 intensity of GDP will still have the potential for decreasing before 2020. By applying KAYA Formula decomposition, this paper makes the historical statistics of the GDP energy intensity decrease and CO2 intensity of energy consumption since 2005, and simulates the decrease of CO2 intensity of GDP in 2020 and its influences on achieving National Determined Contribution (NDC) target in 2030 with scenario analysis. The results show that China’s CO2 intensity of GDP in 2020 is expected to fall by 52.9%–54.4% than the 2005 level, and will be 22.9%–25.4% lower than 2015. Therefore, it is likely to overfulfill the decrease of CO2 intensity of GDP by 18% proposed in the 13th FYP period. Furthermore, the emission reduction potentiality before 2020 will be conducive to the earlier realization of NDC objectives in 2030. China’s CO2 intensity of GDP in 2030 will fall by over 70% than that in 2005, and CO2 emissions peak will appear before 2030 as early as possible. To accelerate the transition to a low-carbon economy, China needs to make better use of the carbon market, and guide the whole society with carbon price to reduce emissions effectively. At the same time, China should also study the synergy of policy package so as to achieve the target of emission reduction.  相似文献   

5.
能源消费是人类活动排放CO2等温室气体的主要来源,碳减排已成为我国能源发展的一个重要约束因素。2012年全世界能源消费排放3.173 4×1010 t CO2,中国能源消费排放的CO2已占世界总排放量的26.0%。2012年全世界人均CO2排放量4 510 kg,而中国人均CO2排放量达到了6 093 kg。同年广东省人均CO2排放量为5 224 kg,高于世界平均水平,低于全国平均水平。随着节能减排和应对气候变化工作的推进,广东的单位产值能耗水平逐年降低,能源结构不断改善,使得全省化石能源消费带来的CO2排放量的增长势头得到抑制,2012年的排放量比2011年略有减少。按目前的发展趋势预测,到2020年,广东CO2排放总量将达到1.606 2×108 t碳当量,比2012年增加9.69×106 t碳当量,人均CO2排放量将达到5 287 kg,略高于2012年的5 224 kg。如果在“十三五”期间加快第三产业发展,则到2020年广东省化石能源消费总量将比2012年下降2.7%,CO2排放总量将比2012年下降3.5%,人均CO2排放量将由2012年的5 224 kg下降到2020年的4 795 kg,接近世界平均水平。  相似文献   

6.
The Bulgarian greenhouse gas (GHG) emission profile reveals the energy sector as the most significant emission source and also as an area where great potential for GHG emissions reduction exists. Mitigation options in energy supply were selected considering the potential of fossil fuel substitution and new energy technology implementation in the context of the existing structure of energy system and projects for mid- and long-term development. Basically three modules of ENPEP were used: BALANCE — to calculate the energy flows and energy cost from primary fuel resources and fuel import to energy end-use, IMPACT — to calculate GHG emissions, and ELECTRIC — to project the electric system long-term development. Different mitigation measures combined in four scenarios were developed. The integrated mitigation scenario incorporated a mix of mitigation measures in the energy demand and supply. Implementation of CO2 mitigation measures both in energy demand and energy supply would reduce the 2020 emission level by 34.3 Tg (29.1%), and by 544.2 Tg (21.7%) for the entire study period 2000 – 2020, compared to the baseline scenario.  相似文献   

7.
Energy conservation and greenhouse warming mitigation can be supported by cogeneration of heat and power and by heat recovery via heat exchangers and via the upgrading of environmental and waste heat by heat pumps. Fuel switching, the use of solar thermal energy, and the removal and disposal of CO2 may complement these measures. In order to determine the optimum combination of these options with conventional energy-conversion technologies for regional energy-supply systems with disaggregated, fluctuating energy-exergy demand profiles, we have developed stochastic and quasi-dynamic vector-optimization models which can be used as computerized planning tools.

The application of the stochastic optimization model ECCO to a south German model city shows that the primary energy input into the system and the CO2 emissions may be reduced by about 25% and 30%, respectively. These figures change as the average ambient temperature deviates from 10 °C. The quasi-dynamic optimization model ECCO-Solar, applied to an army facility which served as a pilot project with well documented energy and weather data, yields savings of primary energy and CO2 emissions which vary between 20% and 50%, depending upon the scenario.

Both models show that the optimum combination of technologies depends very sensitively on the details of the demand situation. Computing the costs and reducing them interactively, one finds that nearly all of the considered energy conservation and emission reduction strategies will become economical only at energy prices which are considerably higher than the present ones.  相似文献   


8.
随着温室效应加剧,CO2减排行动已迫在眉睫。水合物法分离CO2工艺作为一种发展前景广阔的新型CO2分离技术,为CO2减排提供了一种解决思路。水合物法分离CO2工艺相比于化学吸收、物理吸附、深冷分离和膜分离等技术具有分离效率高、过程简单无副产物、条件温和的优势,为减缓CO2排放增加对环境造成的影响提供了一个中短期解决方案,以此为前提将允许人类继续使用化石燃料直至可再生能源技术广泛应用。本文综合分析了国内外的相关文献,介绍了水合物法分离CO2工艺的基本原理,并比较了水合物法分离CO2不同工艺的优劣之处,为进一步优化水合物法分离CO2工艺提供指导。  相似文献   

9.
Recently, global warming and its effects have become one of the most important themes in the world. Under the Kyoto Protocol, the EU has agreed to an 8% reduction in its greenhouse gas (GHG) emissions by 2008–2012. The GHG emissions (total GHG, CO2, CO, SO2, NO2, E (emissions of non-methane volatile organic compounds)) covered by the Protocol are weighted by their global warming potentials (GWPs) and aggregated to give total emissions in CO2 equivalents. The main subject in this study is to obtain equations by the artificial neural network (ANN) approach to predict the GHGs of Turkey using sectoral energy consumption. The equations obtained are used to determine the future level of the GHG and to take measures to control the share of sectors in total emission. According to ANN results, the maximum mean absolute percentage error (MAPE) was found as 0.147151, 0.066716, 0.181901, 0.105146, 0.124684, and 0.158157 for GHG, SO2, NO2, CO, E, and CO2, respectively, for the training data with Levenberg–Marquardt (LM) algorithm by 8 neurons. R2 values are obtained very close to 1. Also, this study proposes mitigation policies for GHGs.  相似文献   

10.
To assess the effectiveness of urban energy conservation and GHG mitigation measures, a detailed Long-range Energy Alternatives Planning (LEAP) model is developed and applied to analyze the future trends of energy demand and GHG emissions in Xiamen city. Two scenarios have been designed to describe the future energy strategies in relation to the development of Xiamen city. The ‘Business as Usual’ scenario assumes that the government will do nothing to influence the long-term trends of urban energy demand. An ‘Integrated’ scenario, on the other hand, is generated to assess the cumulative impact of a series of available reduction measures: clean energy substitution, industrial energy conservation, combined heat and power generation, energy conservation in building, motor vehicle control, and new and renewable energy development and utilization. The reduction potentials in energy consumption and GHG emissions are estimated for a time span of 2007–2020 under these different scenarios. The calculation results in Xiamen show that the clean energy substitution measure is the most effective in terms of energy saving and GHG emissions mitigation, while the industrial sector has the largest abatement potential.  相似文献   

11.
The integration of hydrogen in national energy systems is illustrated in four extreme scenarios, reflecting four technological mainstreams (energy conservation, renewables, nuclear and CO2 removal) to reduce C emissions. Hydrogen is cost-effective in all scenarios with higher CO2 reduction targets. Hydrogen would be produced from fossil fuels, or from water and electricity or heat, depending upon the scenario. Hydrogen would be used in the residential and commercial sectors and for transport vehicles, industry, and electricity generation in fuel cells. At severe (50–70%) CO2 reduction targets, hydrogen would cost-effectively supply more than half of the total useful energy demands in three out of four scenarios. The marginal emission reduction costs in the CO2 removal scenario at severe CO2 reduction targets are DFL 200/tCO2 (ca $ 100/t). In the nuclear, renewable and energy conservation scenarios these costs are much higher. Whilst the fossil fuel scenario would be less expensive than the other scenarios, the possibility of CO2 storage in depleted gas reservoirs is a conditio sine qua non.  相似文献   

12.
Bill Keepin 《Energy Policy》1989,17(6):614-616
Improving energy efficiency is the most effective and least expensive way to reduce carbon dioxide (CO2) emissions in most industrialized nations— including the UK. A report from the UKAEA's own Energy Technology Support Unit concludes that energy efficiency can displace nearly four times more CO2 than nuclear power can - more quickly and more cost-effectively. Each pound invested in efficient lighting can displace four to five times as much CO2 as a pound invested in new nuclear power. Meanwhile, given recent dramatic progress in renewable energy technologies, the most promising long-term CO2-abatement strategy may be a synergistic combination of energy efficiency and renewable energy.  相似文献   

13.
China has become the third largest energy user in the world, and its coal-dominated energy structure implies high CO2 emissions. The amount of CO2 emissions from China may surpass that of the United States within 20–30 years, making China the world's largest source of greenhouse gases by 2020.

Currently, renewable energy resources (except for hydropower) account for only a fraction of China's total energy consumption. However, China has abundant solar energy resources. More than two thirds of China receives an annual total insolation that exceeds 5.9 GJ/m2 (1,639 kWh/m2) with more than 2,200 hours of sunshine a year. Wind energy potential in China is about 3,200 GW, of which 253 GW is deemed technically exploitable. China has a wide range of biomass resources that can be used for energy supply and high temperature geothermal resources suitable for power generation located mainly in Tibet and Yunnan provinces.

Renewable energy technologies have been actively deployed in China. Although PV power stations have not being connected to the national grid, total installed capacity was 3 MW in 1994. Solar water heaters are by far the largest solar thermal application in China with a total installed capacity of 3.3 million m2 in 1994. By the end of 1995, total installed capacity of grid-connected wind power plants had reached 36 MW. Also, over 140,000 small wind generators ranging in size from 50 W to 5 kW have been deployed with a total installed capacity of 17 MW. China is a world leader in the development and application of anaerobic technologies for the production of fuel gas and waste treatment and has by far the largest biomass gasification R&D capacity in the.

Although renewable energy is projected to play a small role in future electricity generation, it is expected to be much more significant in the total energy sector. Under one scenario, renewable energy other than hydro provides up to 4% of the total energy supply and 88 million tons of carbon emission reduction by 2020. The estimated growth in greenhouse gas emissions, as well as serious local and regional environmental pollution problems caused by combustion of fossil fuels, provide strong arguments for the development of renewable energy resources.  相似文献   


14.
In Indonesia, energy consumption (excluding non-commercial energy) increased from 328 MBOE in 1990 to 478 MBOE in 1995. As a consequence, energy sector CO2 emissions increased from 150 million tons to over 200 million tons during the same period. The present rapid economic growth Indonesia is experiencing (7–8%) will continue in the future. Based on a BAU scenario, primary energy supply for the year 2020 will be 18,551 PJ, an increase of 5.9% annually from 1990 CO2 from the energy system will increase from 150 Teragrams in 1990 to 1264 Teragram in 2020. The mitigation scenario would reduce total CO2 emissions from the BAU scenario by 10% for the year 2000 and 20% by 2020. Some demand side management and energy conservation programs are already included in the BAU scenario. In the mitigation scenario, these programs are expanded, leading to lower final energy demand in the industrial and residential sectors.

Indonesia's total primary energy supply in 2020 is approximately 5% lower for the mitigation scenario than for the BAU scenario. In the BAU scenario, coal and oil have the same contribution (25%). In the mitigation scenario, natural gas and nonfossil fuels such as hydropower, geothermal, and nuclear have higher contributions.  相似文献   


15.
DJ Gielen 《Energy Policy》1995,23(12):1049-1062
Energy and material flows are closely related. The materials system is of major significance from a national energy and CO2 point of view. Integrated energy and materials studies can show significant new policy options for energy savings and CO2 emission reduction through materials system improvements, shown in a case study on long-term CO2 emission reduction in the Netherlands. An integrated energy and materials system MARKAL model is used for this analysis. The results show that, on one hand, CO2 emission reduction costs are significantly reduced in the integrated approach and, on the other hand, the materials system is significantly influenced by CO2 emission reduction. Consideration of dynamic interactions results in better understanding of future developments in both energy and materials systems.  相似文献   

16.
This paper presents comparative yet extensive analysis of existing non-conventional renewable resources, energy policies and gaps in BRICS countries. An intelligent transformation to green economy to maintain natural resources is noted. Brazil has stable energy policies and is the leading producer of biofuels following hydropower until 2014 but supported wind and solar power development by tendering specific tariffs for energy generation from solar and wind. Russia needs improvement in its legal and regulatory framework with more incentives in energy policies. China is improving upon wind and hydropower but it needs strong policy measures to put cap on increased CO2 emissions. India needs revision in energy policy and requires extra incentives and consumer specific energy policies for research-infrastructure and energy generation technologies. South Africa requires lessons to increase renewable energy and reduce coal mining. Moreover, BRICS countries need to redefine their energy policies based upon their existing geographical, economical, societal and environmental conditions which will help in shaping global energy policies and more financial stability. This paper recognizes the potential of BRICS to reshape the global system paralleled with minimizing CO2 emissions. The concerted role of BRICS needs to be recognized as the leading contributor of global renewable capacity where the developed world is geared and busy to address the environmental issues.  相似文献   

17.
With the relocation of heavy industries moving from downstream region to upstream and midstream regions in the Yangtze River Economic Belt (YREB), it is critical to encourage coordinated low carbon development in different regions within the YREB. This paper uncovers the evolution of CO2 emissions in different regions within the YREB for the period of 2000–2017. It decomposes regional CO2 emission changes using the temporal and cross-regional three-layer logarithmic mean Divisia index (LMDI) method. Besides, it decomposes industrial CO2 emission changes using the temporal two-layer LMDI method. The research results show that economic growth is the major driver for regional CO2 emission disparities. The mitigation drivers, such as energy intensity and energy structure, lead to a more decreased CO2 emission in the downstream region than in the upstream and midstream regions. In addition, it proposes several policy recommendations based upon the local realities, including improving energy efficiency, optimizing energy structure, promoting advanced technologies and equipment transfers, and coordinating the development in the upstream, midstream and downstream regions within the YREB.  相似文献   

18.
This paper studies the pathways of peaking CO2 emissions of Dezhou city in China, by employing a bottom-up sector analysis model and considering future economic growth, the adjustment of the industrial structure, and the trend of energy intensity. Two scenarios (a business-as-usual (BAU) scenario and a CO2 mitigation scenario (CMS)) are set up. The results show that in the BAU scenario, the final energy consumption will peak at 25.93 million tons of coal equivalent (Mtce) (16% growth versus 2014) in 2030. In the CMS scenario, the final energy will peak in 2020 at 23.47 Mtce (9% lower versus peak in the BAU scenario). The total primary energy consumption will increase by 12% (BAU scenario) and decrease by 3% (CMS scenario) in 2030, respectively, compared to that in 2014. In the BAU scenario, CO2 emission will peak in 2025 at 70 million tons of carbon dioxide (MtCO2), and subsequently decrease gradually in 2030. In the CMS scenario, the peak has occurred in 2014, and 60 MtCO2 will be emitted in 2030. Active policies including restructuring the economy, improving energy efficiency, capping coal consumption, and using more low-carbon /carbon free fuel are recommended in Dezhou city peaked CO2 emission as early as possible.  相似文献   

19.
以广东省为例分析发展核电以来节能减排的综合效益,通过1993-2010年广东省统计数据,应用熵权法,从能源消耗强度、污染物排放、污染物治理与利用和经济效益四方面对广东省核电节能减排效果进行综合评价。结果表明,1993-2010年期间,广东省核电节能减排综合效果呈上升趋势;单位GDP煤炭和石油消耗总量、火电生产和CO2排放总量、单位GDP综合能耗呈下降趋势;单位GDP核电和水电生产总量变化幅度不大,但是核电和水电在电力供应中所占比例较小。  相似文献   

20.
Urban centers are the major consumers of energy, which is a major source of air pollution. Therefore, an insight into energy consumption and quantification of emissions from urban areas are extremely important for identifying impacts and finding solution to air pollution in urban centers. This paper applies the Long-range Energy Alternatives Planning (LEAP) system for modeling the total energy consumption and associated emissions from the household sector of Delhi. Energy consumption under different sets of policy and technology options are analyzed for a time span of 2001–2021 and emissions of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), non-methane volatile organic compounds (NMVOCs), nitrogen oxides (NOx), nitrous oxide (N2O), total suspended particulates (TSP) and sulfur dioxide (SO2) are estimated. Different scenarios are generated to examine the level of pollution reduction achievable by application of various options. The business as usual (BAU) scenario is developed considering the time series trends of energy use in Delhi households. The fuel substitution (FS) scenario analyzes policies having potential to impact fuel switching and their implications towards reducing emissions. The energy conservation (EC) scenario focuses on efficiency improvement technologies and policies for energy-intensity reduction. An integrated (INT) scenario is also generated to assess the cumulative impact of the two alternate scenarios on energy consumption and direct emissions from household sectors of Delhi. Maximum reduction in energy consumption in households of Delhi is observed in the EC scenario, whereas, the FS scenario seems to be a viable option if the emission loadings are to be reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号