首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
沥青路面多裂纹温度应力的数值模拟   总被引:1,自引:0,他引:1  
本文考虑了沥青混合料的粘弹性,基于断裂力学理论,通过有限元数值模拟研究了含多裂纹沥青路面在温度荷载作用下的响应,考察了裂纹间距变化对应力强度因子以及温度应力的影响,结果表明:随着温度降低,基底裂缝的I型应力强度因子逐渐增大;随着裂纹间距的增大,基底裂纹先增大后减小并趋于稳定,表面裂纹尖端的最大压应力亦呈现先增大后减小的趋势,同时对加铺土工布这一阻裂措施利用数值模拟进行了验证.  相似文献   

2.
裂纹的存在极大地影响了材料的力学性能。通过光弹实验和数值分析方法,计算和分析了Y型分支裂纹在压缩载荷作用下裂纹尖端的应力强度因子。实验和数值计算结果表明:分支裂纹周围的等差线条纹基本上对称;分支裂纹与主裂纹的倾角从0°~90°不断变化对主裂纹尖端的应力强度因子影响很小,但使分支裂纹的应力强度因子KI不断减小,而KⅡ则先逐渐增大然后逐渐减小,在45°~60°之间取得极值;同时分析了侧压力对分支裂纹的影响,计算表明,侧压力的逐渐增大使分支裂纹的应力强度因子KI不断增大,而KⅡ则不断减小直到为零。  相似文献   

3.
半刚性基层沥青路面温缩裂缝的有限元分析   总被引:3,自引:0,他引:3  
运用有限单元法计算了半刚性基层沥青路面温缩反射裂缝尖端的应力强度因子,并对影响其大小的各因素进行了敏感性分析,结果表明:基层和面层的模量、温缩系数增大会不同程度的导致裂缝尖端应力强度因子的增大;而增加面层厚度能有效降低温缩裂缝尖端强度因子.研究了行车荷载与温度荷载耦合作用下裂缝尖端应力场的强度特征,在这2种荷载共同作用时的裂缝扩展为复合型扩展.  相似文献   

4.
在使用激光器切割液晶玻璃过程中,时常会碰到边缘质量问题.从断裂力学的角度,运用实验和数值模拟的方法,探讨了激光扫描速度对裂纹尖端应力强度因子的影响,研究了玻璃表面边缘质量缺陷问题、裂纹偏转角以及裂纹扩展到分叉点时的应力强度因子变化.结果表明:仅增加激光扫描速度2mm/s,对裂纹尖端I型和II型应力强度因子的降低就非常明显;裂纹表面边缘的气泡以及缺陷是由于激光扫描过程中局部温度达到玻璃软化温度造成的;裂纹的偏转角符合最大周向应力准则;裂纹分叉点的应力强度因子大小已超过玻璃断裂韧度,而且在扩展到分叉点过程中,应力强度因子KII的作用呈不断增大现象.  相似文献   

5.
沥青路面早期裂缝的出现,降低了道路的使用年限.为了研究使用状态下沥青路面表面裂缝的扩展行为,基于断裂力学理论,应用有限元软件ABAQUS,分析了移动荷载下裂缝应力强度因子K11的变化规律,研究了不同裂缝开裂深度和不同的层间摩擦接触状况下的路面响应,并探讨了面层厚度、面层和基层模量等路面结构参数对裂缝扩展的影响.为半刚性基层沥青路面的合理化设计和沥青路面的维修养护提供一定的理论参考.  相似文献   

6.
利用ABAQUS软件的扩展有限元法对不同倾角的半椭圆形表面裂纹岩体进行数值模拟研究,结果表明:随着裂隙倾角的增大裂纹峰值强度也逐渐增大,并且发现裂隙的倾角对于表面裂纹影响比较大,Ⅰ型应力强度因子在裂纹扩展中起到重要的作用。  相似文献   

7.
针对含中心裂纹的巴西圆盘开裂模型利用ABAQUS进行了参数化二次开发,基于扩展有限元法和最大周向应力准则对试件裂纹扩展进行数值模拟并验证,研究了围压对裂纹扩展以及裂纹尖端应力强度因子和T应力的影响.研究结果表明,试件在预制裂纹尖端发生起裂并沿最大周向应力方向扩展.随着裂纹倾角增大,Ⅰ型应力强度因子逐渐减小,Ⅱ型应力强度因子呈现先增大后减小的趋势,T应力逐渐增大.随着围压数值的升高,试件的断裂韧度增大,T应力增大,而Ⅰ型和Ⅱ型应力强度因子几乎不受影响.  相似文献   

8.
本文结合车轮钢复杂的制备过程,利用激光共聚焦显微镜研究了车轮钢热轧态、冷变形态、焊接态疲劳裂纹萌生及扩展的过程。研究发现:冷变形10%板的裂纹萌生最早,热轧板介于中间,焊接接头启裂最晚。变形10%的样品,裂纹的扩展速度最高。焊接态裂纹扩展的速度居中,热轧态最低。热轧态的疲劳裂纹扩展速度呈现由低到高逐渐变化的过程,开始阶段扩展速率较低,然后进入缓慢增长区,随着裂纹长度的增加,应力强度因子也随之增大,裂纹扩展速度迅速提高。通过背散射电子衍射分析发现,疲劳裂纹的萌生与位错滑移过程密不可分。铁素体组织中裂纹萌生与{001}<110>织构强度直接相关。  相似文献   

9.
基层含裂缝沥青路面的应力分析   总被引:1,自引:0,他引:1  
采用有限元法对基层含裂缝沥青路面进行分析,计算了不同行车荷载作用位置下,沥青路面层底的应力和裂缝尖端的强度因子,以及不同路面参数对层底应力和缝端强度因子的影响。分析结果指出,增加面层厚度可有效降低裂缝尖端应力强度因子的大小,从而延缓裂缝的发展。  相似文献   

10.
岩爆是深埋地下工程在施工过程中常见的破坏现象,严重影响地下工程的安全施工。岩体裂纹尖端的应力强度因子对岩爆的发生有重要影响。使用一种无损的、全领域的平面应力实验分析技术——光弹性实验技术,通过分析试件的主应力差和主应力方向,并使用数值方法,讨论了当隧道围岩裂纹角度和荷载变化时,其尖端应力强度因子的变化情况。结果表明:1)在单轴压缩荷载作用下,裂纹尖端的应力强度因子随裂纹倾角的增加而增加,到达60°时开始下降,并且当倾角固定时,随荷载增加而增加;2)在围压作用下,倾角为45°时的裂纹为最不利裂纹,其应力强度因子最大。  相似文献   

11.
含界面裂纹的GFRP沥青混合料巴西盘断裂力学分析   总被引:2,自引:1,他引:1  
为研究GFRP沥青混合料界面裂尖力学特性,对混合料进行强度分析,设计了含预制界面裂纹的双材料巴西盘试件,实测了加载角度在25°90°之间27个巴西盘试件断裂荷载、裂纹扩展路径和断口形式等试验数据,结合试验数据建立了考虑GFRP正交异性双材料巴西盘有限元模型,采用数值外插法反算了界面应力强度因子,进行了GFRP沥青混合料巴西盘断裂力学性能的理论分析和试验研究.结果表明,含预制界面裂纹的双材料巴西盘试件能全面地反映GFRP沥青混合料的断裂形态,是一种有效的试验方法;以界面应力强度因子作为力学评价指标,能够很好地解释试验现象;含预制界面裂纹的GFRP沥青混合料巴西盘符合椭圆强度准则.  相似文献   

12.
反射裂缝是旧水泥混凝土路面沥青加铺层早期破坏的主要形式之一.加铺层层底裂缝处的荷载应力集中是引起反射裂缝的主要原因.通过建立水泥混凝土路面沥青加铺层有限元模型的方法,计算车轮荷载位于最不利位置时,沥青加铺层的厚度及轴载重量对加铺层层底荷载应力的影响,为防止或减缓加铺层的反射裂缝提供参考.  相似文献   

13.
介绍和讨论了斜裂纹应力强度因子的有限元分析方法,分别计算了单轴、双轴压缩下有限大板中存在的中心贯穿斜裂纹的应力强度因子.通过对求得的应力强度因子值与解析解的比较,表明用有限元法计算应力强度因子具有相当高的精度.同时,通过对不同倾角的裂纹尖端应力强度因子的计算,分析得到了裂纹倾角对应力强度因子的影响,为斜裂纹在复杂载荷作用下的断裂判据的计算提供了有效的方法。  相似文献   

14.
反射裂缝是旧水泥混凝土路面上沥青混凝土加铺层的主要病害之一,针对这一问题,提出了采用开级配大粒径混合料抗反射裂缝的方法。通过有限元分析,大粒径混合料多空隙结构能减小接缝处由交通荷载及环境温度变化所产生的应力,说明大粒径混合料用于防治反射裂缝是可行的。并介绍了大粒径沥青混合料的级配范围与施工工艺,以便推广大粒径混合料的应用。  相似文献   

15.
应用线弹性断裂力学理论结合改进型无网格方法研究沥青路面表面裂纹。改进型无网格法是基于一种改进的移动最小二乘(animproved moving least-squares,IMLS)近似。IMLS近似比现有的移动最小二乘(moving leas--squares,MLS)近似有更高的计算效率和精度,且不会导致系统方程产生病态。算例表明,该方法能较好地模拟裂纹扩展路径,有助于更好地了解沥青路面的开裂行为。  相似文献   

16.
水泥混凝土路面沥青加铺层温度应力分析   总被引:5,自引:0,他引:5  
温度应力是引起水泥混凝土路面沥青加铺层反射裂缝的主要因素之一,当温度降低沥青加铺层变形受阻时,水泥混凝土路面接缝或裂缝处沥青加铺层会因温度应力集中而产生反射裂缝.采用三维有限元方法分析了沥青加铺层的温度应力与降温幅度、加铺层厚度、土工合成材料模量之间的关系,结果表明,在温度较低及昼夜温差较大的地区应采取必要的措施以抵抗温度应力带来的不利影响  相似文献   

17.
应用A nsys软件分析了沥青加铺层路面结构在行车荷载作用下的应力状态,通过加铺层厚度、加铺层模量、混凝土模量及基础模量的改变对沥青加铺层路面结构内应力状态影响的讨论,分析了路面加铺层结构使用效果的影响因素,为路面加铺工程提供了一些建议.  相似文献   

18.
采用Abaqus6.10有限元软件建立三维含裂缝路面结构模型,以Coulomb摩擦接触模拟路面裂缝力学行为,对含裂缝路面结构进行标准轮载力学响应分析。计算在标准轮载作用下路面结构顶面弯沉、基层及面层层底拉应力的大小及分布规律。研究表明,在轮载作用下,含裂缝路面结构在平行于裂缝方向的拉、压应力沿深度方向均增大;在轮载靠近裂缝边缘时水泥稳定基层层底出现峰值拉应力,路面结构以平行于裂缝的拉应力破坏为先导;裂缝的存在对弯沉影响很大,降低了路面结构的传荷能力和整体性,路面结构设计应考虑裂缝的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号