首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The performance characteristics and the near wake of a model wind turbine were investigated experimentally. The model tested is a three‐bladed horizontal axis type wind turbine with an upstream rotor of 0.90 m diameter. The performance measurements were conducted at various yaw angles, a freestream speed of about 10 m s ?1, and the tip speed ratio was varied from 0.5 to 12. The time‐averaged streamwise velocity field in the near wake of the turbine was measured at different tip speed ratios and downstream locations. As expected, it was found that power and thrust coefficients decrease with increasing yaw angle. The power loss is about 3% when the yaw angle is less than 10° and increases to more than 30% when the yaw angle is greater than 30°. The velocity distribution in the near wake was found to be strongly influenced by the tip speed ratio and the yaw angle. At the optimum tip speed ratio, the axial velocity was almost uniform within the midsection of the rotor wake, whereas two strong peaks are observed for high tip speed ratios when the yaw angle is 0°. As the yaw angle increases, the wake width was found to be reduced and skewed towards the yawed direction. With increasing downstream distance, the wake velocity field was observed to depend on the tip speed ratio and more pronounced at high tip speed ratio. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A small‐scale horizontal axis wind turbine capable of producing 100 W of rated power has been designed and tested using a low‐speed wind tunnel. Power output from the wind turbine was calculated through measurements of the electrical current from a 12 V DC generator. Annual energy extraction from this wind turbine shows that a number of potential applications are possible especially in the remote areas where extension of power grid is not feasible. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
基于ANSYS软件,对某款1 500 kW大型水平轴风力机叶片的应力特征进行了分析.该水平轴风力机叶片在极限挥舞载荷的作用下,叶片大梁和叶根的整体应力水平比较高,而剪切腹板和翼板上的整体应力水平比较低,这说明叶片大梁和叶根是叶片的主要承力部件,而剪切腹板和翼板主要作用是维持叶片结构的稳定性.另外,在叶根与剪切腹板相接的角点上存在应力集中现象,其最大应力为228 MPa,但是,剔除应力集中点后,叶片大梁上的应力比叶根高,叶片大梁中部约1/3区域的应力都比较高,其最大应力为211 MPa,平均应力为180 MPa左右.此外,该叶片的最大应力仅为所采用的玻纤,环氧复合材料拉伸强度的34.8%,说明该叶片的铺层结构设计是偏于安全的,可以适当提高叶片挂机运行时的额定发电功率.  相似文献   

4.
A study on stall-delay for horizontal axis wind turbine   总被引:1,自引:0,他引:1  
The study on the stall-delay phenomenon for horizontal axis wind turbine (HAWT) was carried out by employing the boundary layer analysis, the numerical simulation and the experimental measurement. The effects of rotation on blade boundary layers are investigated by solving the 3D integral boundary layer equations with assumed velocity profiles. It is shown that rotation has a generally beneficial effect in delaying separation compared with that under 2D stationary condition. Next, the detailed flow fields are simulated on the conditions of 2D stationary and 3D rotation by CFD code. The computation results show that rotation affects the pressure distribution on the surface of the foil, which can give rise to 3D stall-delay in stalled condition HAWT. Finally, the flow fields behind a model HAWT are measured with a hot-wire probe in the wind tunnel. The results show good agreement with those from 3D computation calculations, suggesting that the stall-delay should be taken into consideration, in order to accurately predict the loading and performance of a HAWT operating in stall.  相似文献   

5.
This research investigates the flow behavior and its features in the blade's root region of a horizontal axis wind turbine by using stereoscopic particle image velocimetry (PIV) technique. Wind tunnel tests are conducted to measure the velocity field, phase‐locked with the blade motion, at different azimuth angles and at different spanwise positions. The pressure distribution is obtained from PIV velocity field by solving the Navier–Stokes momentum equations. In this paper, we aim to answer two questions: (i) How is the flow behavior in the root region? (ii) How is the evolution of the root vortex? The analysis of the velocity fields shows an outboard radial flow motion in the root region and a vorticity driven inboard motion at the blade?s maximum chord position. As a result of this vorticity driven flow, an increase in the axial velocity close to nacelle is measured. Wake sheets are observed and further discussed in the measured velocity and vorticity distributions. The formation and evolution of the root vortices conveyed downstream by the axial velocity are analyzed through vorticity and pressure distributions. Although the azimuthal vorticity in 3D representation is showing the trailing vorticity, the tilting of the root vortex tube is observed in the axial vorticity distribution. Moreover, the radial vorticity and azimuthal velocity from chordwise measurements show separation on the suction surface of the blade. This research concluded that the flow in the blade wake is driven by the root vortex; hence, the local effects of the root vortex cannot be ignored. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
7.
大型水平轴风力机噪声的测量   总被引:1,自引:0,他引:1  
阐述了风力机噪声的传播、衰减和针对噪声的评估准则,以及风力机噪声的测量原理。针对风力机噪声测量测点布置进行了优化,给出了风力机噪声的测量实验方案和装置,并且采用自由声场法对风力机噪声进行了测量,得出了风力机噪声和周围环境噪声之间的合成声压级。  相似文献   

8.
大型水平轴式风电叶片的结构设计   总被引:1,自引:0,他引:1  
风电叶片是风力发电设备的关键部件之一,其制造成本占总成本的20%~30%.叶片结构是叶片捕获风能的保证,并直接影响风力发电设备的运行寿命.因此,叶片结构设计的好坏在很大程度上决定了风力发电设备的可靠性和利用风能的成本.文章从材料、结构形式、铺层设计、结构分析等4个方面详细地阐述了风电叶片结构的设计技术.  相似文献   

9.
文章采用数值模拟结合理论分析的方法,对在偏航工况下额定功率为300 W的S翼型水平轴风力机进行计算和分析。首先进行网格无关性验证,在此基础上对4个偏航工况进行数值模拟,对比分析了风轮后不同截面上的尾迹速度和尾迹偏转角。结果表明,偏航导致尾迹中心产生一定程度的偏斜,尾迹形状卷曲不对称,风力机尾迹缩短;随着偏航角的增大,尾迹偏转角增大;随着传播距离的增加,偏转程度逐渐减小,风轮上、下侧尾迹偏转差别很大。  相似文献   

10.
Seongkyu Lee 《风能》2015,18(2):253-266
A new inverse design process for horizontal axis wind turbine blades is developed to account for three‐dimensional blade features such as non‐planar wing tip. The multidimensional Newton iteration method combined with a vortex line method is used to provide blade geometry parameters given desired aerodynamic behaviors such as lift coefficient and axial induction. The Jacobian matrix is visualized to show the effect of the change of the blade twist and chord on the change of the aerodynamic behaviors. The method is validated for a canonical straight blade with uniform lift coefficient and axial induction distributions. The results show an excellent agreement with those obtained by PROPID, which is a blade element momentum theory‐based inverse design code. The National Renewable Energy Laboratory Phase VI blade is used to validate the method for a straight blade with non‐uniform distributions of the lift coefficient and axial induction. The method is also applied successfully to a non‐straight blade design with a non‐planar wing tip. A noticeable change in the twist and chord for this non‐straight blade is seen compared with a straight blade. Finally, the inverse design code is used to make a large rotor blade, and the power output generated by this blade is computed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Full scale blade fatigue testing is required to verify that the horizontal axis wind turbine (HAWT) blades posses the strength and service life specified in the design. Unfortunately, fatigue tests must be run for a long time period, which has led blade testing laboratories to seek ways of accelerating fatigue testing time and reducing the costs of tests. The objective of this article is to develop a novel method called a WT-based fatigue damage part extracting method. Based on wavelet transform (WT), this method extracts fatigue damage parts from the stress-time history and generates the edited stress-time history with shorter time length. Also, this article proposes a concept of applying accumulative power spectral density (AccPSD) to identify fatigue damage events contained in the stress-time history of HAWT blades. Wavelet functions used in this study are Morl, Meyr, Dmey, Mexh and DB30. It has been found that Mexh wavelet with an AccPSD level of 9000 Energy/Hz provides the edited stress-time history having a maximum reduction of 20.77% in length with respect to the original length, whilst fatigue damage per repetition can be retained almost the same as the original one. In addition, an existing method, time correlated fatigue damage (TCFD), is used to validate the effectiveness of a WT-based fatigue damage part extracting method. The results suggest that not only does the WT improve the accuracy of fatigue damage retained, but also it provides a shorter length of the edited stress-time history. To conclude, WT is suggested as an alternative technique in fatigue durability study, especially for the field of wind turbine engineering.  相似文献   

12.
根据大型卧式水轮发电机组安装后机组轴线可能发生的偏差按径向和轴向间隙进行量测,推导出轴承调整移动量计算公式,通过实例说明公式的应用。  相似文献   

13.
14.
Kevin B. Howard  Michele Guala 《风能》2016,19(8):1371-1389
Data collected at the Eolos wind research facility and in the Saint Anthony Falls Laboratory atmospheric boundary layer wind tunnel are used to study the impact of turbulent inflow conditions on the performance of a horizontal axis wind turbine on flat terrain. The Eolos test facility comprises a 2.5MW Clipper Liberty C96 wind turbine, a meteorological tower and a WindCube LiDAR wind profiler. A second set of experiments was completed using particle image velocimetry upwind and in a wake of a miniature turbine in the wind tunnel to complement LiDAR measurements near the Eolos turbine. Joint statistics, most notably temporal cross‐correlations between wind velocity at different heights and turbine performance, are presented and compared at both the laboratory and field scales. The work (i) confirms that the turbine exerts a blockage effect on the mean flow and (ii) suggests a key, specific elevation, above hub height, where the incoming velocity signal is statistically most relevant to turbine operation and control. Wind tunnel measurements confirm such indication and suggest that hub height velocity measurements are optimal for wind preview and/or as input for active control strategies in aligned turbine configurations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
《Energy》2005,30(11-12):2089-2100
The aerodynamic performance characteristics of a horizontal axis wind turbine (HAWT) were investigated theoretically by an analysis involving a combination of momentum, energy and blade element theory by means of the strip element method, and experimentally by the use of a subscale demonstration model. In this study, two approaches involving combination analysis are made use of, namely, the thrust–torque and the thrust–energy methods. Although both approaches yield identical results, the latter is superior for elucidating the relationship of the kinetic energy of the flows on the blades. Scale experiments are performed with three types of wing aerofoil involving different arrangements with the free stream velocity, U=0.8–4.5 m/s, and for the open type of wind tunnel with an outlet duct diameter of 0.88 m. The experimental and theoretical characteristics of the HAWT using the different three types of the HAWT blades are discussed by reference to the power, torque and thrust coefficients, CP, CT, Cth, and the tip speed ratio λ from the point of view of variable pitch control and fixed pitch stall control methods for the output regulation. The aeronautical characteristics predicted by means of the present numerical approaches, for large units involving large power generation at high efficiency, are discussed, and it is clear how to obtain optimized design parameters that play a significant role in the overall performance.  相似文献   

16.
简述了HSW-250型风力发电机组运行过程中出现的零部件损坏的现象;通过现场检查和分析,掌握了发电机轴与轴承配合超差问题;指出了振动过大是发电机轴损坏的根本原因.文章讨论了对发电机轴修复的方法,认为采用低温镀铁修复工艺是适宜的.  相似文献   

17.
Rotating stall around a small-scale horizontal axis wind turbine was experimentally studied to characterize and assess smart rotor control by plasma actuators. Phase-locked Particle Image Velocimetry was used to map the flow over the rotor blade suction surface at numerous radial stations at a range of tip-speed-ratios. Flow separation occurred from the inboard of the blade and spread radially outwards as the tip-speed-ratio reduced. Plasma actuators placed along the span that produced a chord-wise body force had very little effect on the flow separation, even when operated in pulsed forcing mode. In contrast, plasma actuators along the blade chord that produced a body force into the radial directions (plasma vortex generators) successfully mitigated rotating stall. Torque due to aerodynamic drag was reduced by up to 22% at the lowest tip-speed-ratio of 3.7, suppressing stall over the outboard 50% of the blade. This was due to quasi-two-dimensional flow reattachment in the outboard region, and shifting of a fully stalled zone towards the hub in the inboard region because the plasma-induced body force counteracted the Coriolis-induced radial flow. This can significantly increase the turbine power output in unfavourable wind conditions and during start-up.  相似文献   

18.
19.
Over the last decade, several coupled simulation tools have been developed in order to design and optimize floating wind turbines (FWTs). In most of these tools, the aerodynamic modeling is based on quasi‐steady aerodynamic models such as the blade element momentum (BEM). It may not be accurate enough for FWTs as the motion of the platform induces highly unsteady phenomena around the rotor. To address this issue, a new design tool has been developed coupling a seakeeping solver with an unsteady aerodynamic solver based on the free vortex wake (FVW) theory. This tool is here compared with the reference code FAST, which is based on the BEM theory in order to characterize the impact of the aerodynamic model on the seakeeping of a floating horizontal axis wind turbine (HAWT). Aerodynamic solvers are compared for the case of the free floating NREL 5MW HAWT supported by the OC3Hywind SPAR. Differences obtained between the models have been analyzed through a study of the aerodynamic loads acting on the same turbine in imposed harmonic surge and pitch motions. This provides a better understanding of the intrinsic differences between the quasi‐steady and unsteady aerodynamic solvers. The study shows that differences can be observed between the three aerodynamic solvers, especially at high tip speed ratio (TSR) for which unsteady aerodynamic phenomena and complex wake dynamics occur. Observed discrepancies in the predictions of the FWT dynamic response can raise issues when designing such a system with a state‐of‐the‐art design tool.  相似文献   

20.
基于叶素理论和风力机的运行特点,建立了叶片的科氏加速度理论计算模型;应用有限元原理,给出了考虑科氏力时风力机叶片频率的计算方法;根据小扰动思想推导出了叶片在旋转状态下的动频分量.最后应用以上模型和方法,以600 kW风力机叶片为例进行了实体建模、动力学分析,得出频率及相应振型,结果表明科氏力对叶片的频率有一定程度的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号