首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this work is to demonstrate the effect of operational drying parameters on the physicochemical and techno-functional properties of lactose-hydrolyzed milk powder (LHMP). LHMP showed water content superior to the control regardless of drying conditions, which is a direct result of the difficulties encountered in drying the product. For a lab-scale spray dryer, the LHMP produced at θair,in?=?145°C and mCM?=?1.0?kg?·?h?1 was the only sample that met all stipulated quality parameters: water content <5% (w/w), aw?93, particle sizes similar to control, and complete rehydration.  相似文献   

2.
《Drying Technology》2013,31(5):895-917
Abstract

The concept of the product moisture locus was tested in this work using a pilot-scale modified Niro spray dryer (diameter 0.8 m, height 2 m), where the residence time of the particles inside this spray dryer is lower compared with larger industrial spray dryers. The moisture contents of skim milk powder produced from spray drying skim milk (solids content 8.8% w/v) at different operating conditions, namely different swirl vane angles (0°, 25°, 30°), inlet air temperatures (170°C, 200°C, 230°C) and process fluid flowrates (1.4 kg h?1, 1.6 kg h?1, 1.8 kg h?1), were compared with the predicted equilibrium moisture contents. In addition, the residence time of the particles was also increased in the spray dryer by decreasing the inlet air mass flowrate from 0.016 to 0.013 kg s?1. The outlet moisture contents of the skim milk powder for all the 23 runs carried out in this work were within 0.4% of the equilibrium values. Thus, the skim milk powder particles were in close equilibrium with the gas inside the drying chamber. These equilibrium limitations are confirmed by other literature data (Boonyai, P. Comparative Evaluation of Soymilk Drying in a Spray Dryer and Spouted Bed of Inert Particles. M.Sc. Thesis. Asian Institute of Technology: Bangkok, Thailand, 2000; 90 pp; Harvie, D.J.E.; Langrish, T.A.G.; Fletcher, D.F. A computational fluid dynamics study of a tall-form spray dryer. Trans IChemE 2002, in press). The use of this finding to predict spray dryer performance is demonstrated by mass and energy balance calculations.  相似文献   

3.
In the current study, evolution of thermophysical properties of red chilli dried in a mixed mode solar dryer that integrates sodium sulfate decahydrate (Na2SO4?·?10H2O) and sodium chloride (NaCl) as thermal storage were presented. Solar drying with Na2SO4?·?10H2O reduced the drying time by 26.7 and 39%, compared to the drying time with or without NaCl. Dimensional shrinkage was gradual with a nonlinear exponential shape for the whole drying conditions. The evolution of the bulk and particle densities decreased while the porosity of the seed increased with time. The coefficient of heat and mass transfer varied from 0.0036???0.035?W/m2?K to 6.09?×?10?9???6.2?×?10?8?m/s, respectively. The thermal conductivity, specific heat capacity, and thermal diffusivity ranged from 0.0568 to 0.1093?W/m?K, 1,072 to 2218.7?J/kg?K, and 4.7?×?10?5 to 5.13?×?10?5?m2/s, respectively.  相似文献   

4.
K. Kota 《Drying Technology》2013,31(8):993-1001
The pattern of wall deposits in a pilot-scale spray dryer has been studied, using skim milk, by changing the flow rate to the nozzle and measuring the resultant deposition fluxes at different positions inside the dryer. The solids concentration was maintained at 30%. The deposition was measured at three locations of the conical section and in the cylindrical section of the spray dryer. Particle deposition can be either due to the inertia of the particles or turbulent diffusion, and it is not immediately obvious which of these mechanisms is dominant. Inertial deposition appeared to be present mainly at the bottom location of the conical section and was the largest amount in quantitative terms, being at least an order of magnitude larger compared with diffusion deposition, which seemed to be dominant on the side (cylindrical) walls of the spray dryer. In addition to the above observations, the deposition patterns in the conical section have been quantified. The relative deposition flux, in m?2, which is the ratio of the deposition flux, in g m?2 h?1, to the solids flow rate into the dryer, in g h?1, was between 0.04 and 0.09 m?2 at a solids concentration of 8.8% and between 0.15 and 0.4 m?2 at a solids concentration of 30%. The fused appearance of the microstructure in the wall deposits of skim milk powder, as seen in the Micro-CT study, suggests that re-entrainment of the wall deposits is unlikely.  相似文献   

5.
Proper disposal of nuclear waste with multi-nuclides and multi-valence is still challenge. A series of (Mo, Ru, Pd, Zr) tetra-doped Gd2Zr2O7 ceramics were studied to understand the microstructure and performance evolution of nuclear waste forms that immobilised simulated waste after trialkyl phosphine oxides (TRPO) process. The structure of as-obtained samples were tested by X-ray diffraction, Raman, scanning electron microscope, electron back-scattered diffraction, and energy-dispersive X-ray spectroscopy, while the mechanical and chemical performance were characterised by Vickers hardness and aqueous leaching method. The results indicate that the mechanical behaviour are closely linked with the phase structure, and the highest Vickers hardness is obtained at the phase turning point. The leaching results show that the normalised leaching rate (LR) of the doped elements decrease in the order of Mo, Ru, Pd, Zr. After reaching equilibrium, their LR are as low as 4.12?×?10?4?g·m?2·d?1, 1.50?×?10?5?g·m?2·d?1, 1.30?×?10?5?g·m?2·d?1, and 2.09?×?10?7?g·m?2·d?1, respectively.  相似文献   

6.
Single-layer solar drying experiments were conducted for Mexican tea leaves (Chenopodium ambrosioides) grown in Marrakech. An indirect forced convection solar dryer was used in drying the Mexican tea leaves at different conditions such as ambient air temperature (21° to 35°C), drying air temperature (45° to 60°C) with relative humidity (29 to 53%), airflow rate (0.0277 to 0.0556 m 3/s), and solar radiation (150–920 W/m2). The experimental drying curves showed only a falling rate period. In order to select the suitable form of drying curves, 14 mathematical models were applied to the experimental data and compared according to their statistical parameters. The main factor in controlling the drying rate was found to be the temperature. The drying rate equation was determined empirically from the characteristic drying curve. The diffusion coefficient of the Chenopodium ambrosioides leaves was estimated and varied between 1.0209 × 10?9 and 1.0440 × 10?8 m 2·s?1.The activation energy was found to be 89.1486 kJ·mol?1.  相似文献   

7.
The kinetics of alcoholic fermentation of a strain of Zymomonas mobilis, isolated from sugarcane juice, has been studied with the objective of determining the constansts of a non-structured mathematical model that represents the fermentation process. Assays in batch and in continuous culture have been carried out with different initial concentrations of glucose. The final concentrations of glucose, ethanol and biomass were determined. The following kinetic parameters were obtained: μmax, 0·5 h?1; Ks, 4·64 g dm?3; Pmax, 106 g dm?3; Yx/s, 0·0265 g g?1; m, 1·4 g g?1 h?1; α, 17·38 g g?1; β, 0·69 g g?1 h?1.  相似文献   

8.
X. Liu  D. Wu  Z. Chen  X. Zhao 《应用陶瓷进展》2015,114(8):436-441
The 1?mol.-%Sr and 1?mol.-%Sn codoped (Ba0·84Ca0·15Sr0·01)(Ti0·90Zr0·09Sn0·01)O3 (BCSTZS) ceramics were synthesised by the normal solid state sintering method. The electric field and temperature dependence of the ferroelectric properties of the BCSTZS ceramics were investigated. Their energy storage density depending on electric field and temperature was determined from the polarisation–electric field (PE?) hysteresis loops. According to the dielectric analysis, the BCSTZS ceramics experience three-phase transitions upon cooling. At room temperature, the pyroelectric coefficient p calculated from the remnant polarisation–temperature (PrT?) curve is 1116·7?μC?K??1?m??2, and the figures of merit Fd is 18·1?μPa??1/2, Fv is 0·013?m2?C??1 and Fi is 479·3?pm?V??1 respectively. The pyroelectric figures of merit exhibit high frequency stability over a wide range from 100 to 2000?Hz, whereas these values vary gradually with the increase in temperature, which deserves further research to improve their stability. The excellent pyroelectric property of the BCSTZS ceramics is considered as correlating with a polymorphic phase transition occurring around room temperature. The present study demonstrates that the lead free BCSTZS ceramics are promising candidate for replacing the lead zirconate titanate based ceramics.  相似文献   

9.
Abstract

B-site complex ions (Li1/4Nb3/4)4+ modification (Bi1/2Na1/2)0·94Ba0·06TiO3 ceramics with compositions of (Bi1/2Na1/2)0·94Ba0·06Ti1?x(Li1/4Nb3/4)xO3 (x?=?0, 0·01, 0·03 and 0·06) have been synthesised via the conventional solid state reaction. The effect of (Li1/4Nb3/4)4+ content and sintering temperature on structures and electrical properties were investigated. It was found that both compositions and sintering temperatures have no significant effect on the crystal structure, and trace (Li1/4Nb3/4)4+ addition and sintering temperatures have a great influence on the microstructure. Two obvious dielectric anomaly peaks (Td and Tm) were observed and dielectric constant for all poled specimens displayed significant frequency dispersion at Td and diffusion phase transition at Tm. The piezoelectric properties of the ceramics are insensitive to the sintering temperatures, and the composition with x?=?0·03 sintering at 1150°C exhibits favourable piezoelectric properties of d33?=?155 pC N?1 and kp?=?0·312.  相似文献   

10.
A drying technique using a combination of a contact ultrasound apparatus and a hot air dryer is developed to investigate the strengthening effect of contact ultrasound on hot air drying. The effects of drying parameters such as ultrasound power and drying temperature on drying characteristics, effective moisture diffusivity (Deff), microstructure, glass transition temperature (Tg), rehydration ratio, and color difference are discussed. The results show that the application of contact ultrasound causes a significant acceleration of internal mass transfer, and higher ultrasound power applied leads to faster drying rate. The effect of ultrasound power on drying rate decreases along with the reduction of moisture content during drying process. The increase in drying temperature significantly reduces drying time but has a little negative influence on the strengthening effect of ultrasound. Deff values range from 1.0578?×?10?10 to 5.4713?×?10?10?m2/s in contact ultrasound-assisted hot air drying of purple-fleshed sweet potato and increase significantly with an increase in drying temperature as well as ultrasound power. The microstructure of purple-fleshed sweet potato is greatly different at different ultrasound powers during contact ultrasound-assisted hot air drying and shows more microchannels and dilated intercellular spaces in the cross-section of purple-fleshed sweet potato micrographs at higher ultrasound power. Contact ultrasound application during hot air drying could improve the mobility of water and consequently reduce glass transition temperature. Lower color difference and higher rehydration ratio could be achieved as drying temperature decreases and ultrasound power increases. The increase in contact ultrasound power could reduce energy consumption of drying process up to 34.60%. Therefore, contact ultrasound assistance is a promising method to enhance hot air drying process.  相似文献   

11.
The possibility of using milk permeate (MP) to lower the protein level of skim milk powder (SMP) in producing powders of 34% and lower protein is explored. Skim milk suspensions with various levels of MP were prepared by mixing SMP and MP powder (MPP) at the ratios of 1:0, 7:3, 3:7, and 0:1: from 34 to 5.3% protein. The suspensions were dried in a spray dryer with inlet and outlet temperatures of 180 and 80°C, respectively. Increasing permeate concentration in the mixture showed a greater tendency to stickiness manifested by lowered the cyclone recovery of the powder as more powder stuck on the wall of the dryer. Increasing permeate concentration in the resultant powder did not significantly affect the bulk density but led to a reduction in the particle size and also made the powder slight green and yellowish in color. It also found to lower the glass transition temperature (Tg ) of the skim milk powder (SMP) and induce crystallization of lactose at lower water activity (aw  ≥ 0.328 for SMP:MPP of 3:7 and 0:1 compared to aw  ≥ 0.0.432 for SMP:MPP of 1:0 and 3:7). Addition of MP in SMP lowered the Tg values of the resulting powders. The permeate fraction in spray-dried SMP/MPP mixtures found to lower the critical aw and moisture content, suggesting the SMP mixed with MPP is more likely to become sticky than SMP alone (at 34% protein) when stored at a similar water activity and moisture content.  相似文献   

12.
A study was performed to determine the drying characteristics and quality of barley grain dried in a laboratory scale spouted-bed dryer at 30, 35, 40, and 45°C and an inlet air velocity of 23 m/s?1, and in an IR-convection dryer under an infrared radiation intensity of 0.048, 0.061, 0.073, and 0.107 W cm?2 at an air velocity of 0.5 m/s?1. The results show that the first, relatively short, phase of a sharp decrease in the drying rate was followed by the phase of a slow decrease. The time of barley drying depended on temperature of inlet air in a spouted-bed dryer and on radiation intensities in an IR-convection dryer. Barley drying at 45°C in a spouted-bed dryer was accompanied by the lowest total energy consumption. The average specific energy consumption was lower and the average efficiency of drying was higher for drying in a spouted-bed dryer. The effective diffusivities were in the range 2.20–4.52 × 10?11 m2 s?1 and 3.04–4.79 × 10?11 m2/s?1 for barley dried in a spouted-bed and in an IR-convection dryer, respectively. There were no significant differences in kernel germination energy and capacity between the two drying methods tested.  相似文献   

13.
The objective of this study was to evaluate the effect of the main factors affecting the cost of the filtration process in submerged anaerobic membrane bioreactors (AnMBRs) for urban wastewater (UWW) treatment. Experimental data for CAPEX/OPEX calculations was obtained in an AnMBR system featuring industrial-scale hollow-fiber (HF) membranes. Results showed that operating at J20 slightly higher than the critical flux results in minimum CAPEX/OPEX. The minimum filtration process cost ranged from €0.03 to €0.12 per m3, mainly depending on SGDm (from 0.05 to 0.3 m3·m?2·h?1) and MLSS (from 5 to 25 g·L?1). The optimal SGDm resulted in approx. 0.1 m3·m?2·h?1.  相似文献   

14.
Two series of U doped zirconolite–sphene composite materials were prepared by solid state reaction method: CaZr(1?m)UmTi2O7?(1?m) Ca(1?x)UxAl2xTi(1?2x)SiO5 (m?=?7x) and Ca(1?n)U6nZr(1?5n)Al2nTi(2?2n)O7?(1?5n) Ca(1?y)UyAl2yTi(1?2y)SiO5 (n?=?5y/6). The effects of U content on the phase structure of the composite materials were mainly investigated. The results show that the optimal synthesis temperature of the composite material is ~1230°C. In comparison with the incorporation of U in the Zr site of zirconolite, U incorporation in the Ca site of zirconolite using Al as charge compensating ions was not very efficient. Hydrothermal stability of the U doped zirconolite–sphene composite material was examined by modified product consistency test method at 90°C in deionised water (pH 7). The normalised U leach rate is fairly constant in a low value below 10?5 g m?2 day?1 after 28 days.  相似文献   

15.
Biofilms are the most common mode of bacterial growth in nature and the formation will occur on organic or inorganic solid surfaces in contact with a liquid. The aims of this study were, by combining numeration and sessile drop technique, (i) to characterize the structural dynamics of dairy biofilm growth and the physico chemical properties on silicone and stainless steel and (ii) to evaluate the impact of bio-adhesion on chemistry of surfaces at different times of contact (2, 7, 9 and 24?h). Significantly, greater biofilm volumes were observed after 48?h on two materials. Gram-positive bacteria and fungal population exhibited a significantly higher biofilm organization than gram-negative (43–64%). Elsewhere, after 48?h, results showed a slight difference on gram-negative adhered cells on stainless steel than silicone (2.6?×?107?cfu/cm2 and 4.7?×?105?cfu/cm2, respectively). Moreover, the physico chemical properties of the surfaces showed that the silicone and stainless steel have a hydrophobic character (Giwi?=??68.28?mJ/m2 and ?57.6?mJ/m2, respectively). Also, both the surfaces present a weak electron donor character (γ ??=?2.2?mJ/m2 and 4.1?mJ/m2, respectively). The real-time investigation of the impact of dairy biofilm on the physico chemical properties of the materials has shown a decrease of hydrophobicity degree of the silicone surface that becomes hydrophilic (ΔGiwi?=?11.47?mJ/m2) after 7?h and the increase of electron donor character (γ ??=?75.8?mJ/m2). Elsewhere, bio-adhesion on stainless steel was accompanied with a decrease of hydrophobicity degree of the surface, which becomes hydrophilic after 7?h of contact (ΔGiwi?=?6.62?mJ/m2) and the increase of the electron donor character (γ ??=?44.8?mJ/m2). While, after 24?h of contact, results showed a decrease of the hydrophilicity degree and surface energy components of silicone and stainless steel that become hydrophobic (ΔGiwi?=??21.2?mJ/m2 and ΔGiwi?=??56.51?mJ/m2, respectively) and weak electron donor (γ ??=?14.0 and 2.3?mJ/m2, respectively).  相似文献   

16.
The influence of pulsed electric field (PEF) and subsequent centrifugal osmotic dehydration (OD) on the convective drying behavior of carrot is investigated. The PEF was carried out at an intensity of E = 0.60 kV/cm and a treatment duration of t PEF  = 50 ms. The following centrifugal OD was performed in a sucrose solution of 65% (w/w) at 40°C for 0, 1, 2, or 4 h under 2400 × g. The drying was performed after the centrifugal OD for temperatures 40–60°C and at constant air rate (6 m3/h).

With the increase of OD duration the air drying time is reduced spectacularly. The dimensionless moisture ratio Xr = 0.1 is reached for PEF-untreated carrots after 370 min of air drying at 60°C in absence of centrifugal OD against 90 min of air drying after the 240 min of centrifugal OD. The PEF treatment reduces additionally the air drying time. The total time of dehydration operations can be shortened when OD time is optimized. For instance, the minimal time required to dehydrate untreated carrots until Xr = 0.1 is 260 min (120 min of OD at 40°C and 140 min of drying at 60°C). It is reduced to 230 min with PEF-treated carrots.

The moisture effective diffusivity D eff is calculated for the convective air drying based on Fick's law. The centrifugal OD pretreatment increases drastically the value of D eff . For instance, 4 h of centrifugal OD permitted increasing the value of D eff from 0.93 · 10?9 to 3.85 · 10?9 m2/s for untreated carrots and from 1.17 · 10?9 to 5.10 · 10?9 m2/s for PEF-treated carrots.  相似文献   

17.
This study investigated the adsorption of PO43? onto encapsulated nanoscale zero-valent iron (nZVI). At initial PO43–: 10 mg · L?1, the optimum condition was initial pH: 6.5, nZVI dosage: 20 g · L?1, stirring-rate: 100 rpm, and time: 30 min, achieving PO43? removal of 42%. The effect of pH and time on the PO43? removal efficiency was quadratic-linear concave up, whereas the curve of nZVI dosage was quadratic-convex. Artificial neural network with a structure of 5?7?1 adequately predicted PO43? removal (R2: 97.6%), and the sensitivity analysis demonstrated that pH was the most influential input. The cost of the adsorption unit was 3.15 $USD · m?3.  相似文献   

18.
The adsorption of cadmium and zinc ions on natural bentonite heat-treated at 110°C or at 200°C and on bentonite acid-treated with H2SO4 (concentrations: 0·5 mol dm?3 and 2·5 mol dm?3), from aqueous solution at 30°C has been studied. The adsorption isotherms corresponding to cadmium and zinc may be classified respectively as H and L types of the Giles classification which suggests the samples have respectively a high and a medium affinity for cadmium and zinc ions. The experimental data points have been fitted to the Langmuir equation in order to calcualte the adsorption capacities (Xm) and the apparent equilibrium constants (Ka) of the samples; Xm and Ka values range respectively for 4·11 mg g?1 and 1·90 dm3 g?1 for the sample acid-treated with 2·5 mol dm?3 H2SO4 [(B)-A(2·5)] up to 16·50 mg g?1 and 30·67 dm3 g?1 for the natural sample heat-treated at 200°C [B-N-200], for the adsorption process of cadmium, and from 2·39 mg g?1 and 0·07 dm3 g?1, also for B-A(2·5), up to 4·54 mg g?1 and 0·45 dm3 g?1 [B-N-200], for the adsorption process of zinc. Xm and Ka values for the heat-treated natural samples were higher than those corresponding to the acid-treated ones. The removal efficiency (R) has also been calculated for every sample; R values ranging respectively from 65·9% and 8·2% [B-A(2·5)] up to 100% and 19·9% [B-N-200], for adsorption of cadmium and zinc.  相似文献   

19.
Analysis of the growth of Pseudomonas cepacia G4 on phenol in continuous culture has been carried out. The data were checked for consistency using both available electron and carbon balances. Coupled with the covariate adjustment estimation technique, the best estimates for true biomass energetic yield, ηmax and maintenance, me, were obtained when the carbon dioxide measurements were excluded. However, upon making corrections to the gas measurements, the best estimates were the maximum likelihood estimates (MLE) based on the complete data. The method therefore allows discrimination to be made between data. Also, similar estimates were obtained using Pirt's model based on the Monod approach and a modified form based on substrate uptake rate being the limiting factor. For the aerobic growth of P. cepacia G4 on phenol, ηmax = 0·417 and me = 0·0513 h?1 were obtained when the CO2 data were excluded. When corrections were made to the gas measurements to take into account the dissolved CO2 and the effect of operating temperature, ηmax = 0·432 and me = 0·0684 h?1 were obtained. From the 95% confidence intervals, a maximum of about 38–47·5% of the energy contained in phenol is incorporated into the biomass while the balance (52·5–62%) is evolved as heat with only a little energy needed for the maintenance of the organism.  相似文献   

20.
Abstract

The Lactobacillus casei L61 has great ability for producing antioxidant peptides. For reducing the mortality of L. casei L61 in spray drying process, the Box-Behnken design (BBD) was adopted to optimize the composite thermal protective agent formula. The results exhibited that the composite thermal protective agent formula of L. casei L61 contained glucose at 6.03% (w/v), skim milk at 18.98?g/L, and glycerol at 12.50?mL/L. Under the optimal conditions, the average survival of L. casei L61 in the fermented goat milk reached 14.58?±?0.72% after heat treatment at 75?°C for 10?min, which was higher than the control (13.14%). The average hydroxyl free radical scavenging activity of L. casei L61 reached 85.09?±?0.98%, which was not significantly different from the predicted value (86.83%). Therefore, the BBD is feasible for optimizing the composite thermal protective agent formula of L. casei L61. Under the optimal conditions with the inlet air temperature of 130?°C and feed rate of 4.5?mL/min, the maximum viable counts and survival rate of L. casei L61 were 7.46?×?108 cfu/g and 23.41?±?1.28%, respectively. More importantly, the storage stability of antioxidative probiotic goat milk powder was predicted by temperature acceleration test. The shelf life of antioxidative probiotic goat milk powder was estimated to be 352?days at 4?°C and 117?days at 25?°C, embodying the great long-term stability. This study provides a technical reference for industrialized production of probiotic goat milk powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号