首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The reabsorption characteristics of the lignite treated by low and high temperature drying process were addressed in the paper. The information about the moisture form, functional groups, effective water-filled porosities and equilibrium moisture content of the lignite before and after the drying process was investigated using Differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and a self-made reabsorption device, respectively. The results show that the low drying temperature (140, 190, 230?°C, 10?min, N2) has little impact on the effective water-filled porosities of the resulted samples, whereas it has a great influence on the main oxygen-containing functional groups, which amount firstly decreases and then increases with the drying temperature increasing. In the case of the lignite samples dried under high-temperature (600, 700, 800?°C, 30?s, N2), the amount of the effective water-filled porosity of the sample decreases and the amount of oxygen-containing functional groups increases as the temperature increasing. The reabsorption capability of the high temperature dried sample is much lower than that of the sample treated under low drying temperature. The reabsorption characteristics of the low-temperature dried samples are affected by the amount of the oxygen-containing functional groups, while the effective water-filled porosity is main factor for the lignite samples derived from high temperature drying process. Moreover, the work gives a good evidence that the high-temperature drying process is an effective choose for lignite upgrading.  相似文献   

2.
Microwave lignite drying with assistance of biomass-derived char was addressed and effect of bio-char on drying rate and energy consumption was investigated in this work. Effective diffusion coefficient and activation energy for the drying process were also analyzed. The results indicated the drying process was largely dependent on the variation of sample temperature. Bio-char originated from pine wood was most favorable for lignite drying, considering its better promoting effect and advanced security. There existed an optimal bio-char addition ratio for drying process at different power. The corresponding optimal ratio was 10% at 231?W and 15% at 385?W, at which the biggest drying rate and the least energy consumption were reached. It was compared lignite drying initiated at 385?W was better for energy conservation. Effective diffusivity was improved and activation energy was simultaneously reduced, with the addition of bio-char. The minimum activation energy was 15.54?W?·?g?1, which was gained at bio-char addition ratio of 10%. The results revealed the effect of bio-char on depressing activation energy could rival that of metal-based additives. The drying process with assistance of microwave and bio-char could present technical and economical benefits on lignite upgrading.  相似文献   

3.
A combined conventional and microwave drying process for Ximeng lignite was investigated in this paper. Samples were firstly dehydrated by hot air to achieve a conversion moisture content, and then were managed to final moisture content by microwave drying. Results showed that the drying rate was significantly improved in the decreasing rate period by microwave drying, approximately 3–5 times faster than that of conventional drying. Finally, the orthogonal test was used to clarify the effects of each factor on the energy consumption, and the magnitude ranking order was conversion moisture content?>?microwave power?>?hot air temperature.  相似文献   

4.
《Ceramics International》2022,48(20):30430-30440
Ca–ZrO2 is an essential structural and functional material, which is commonly used in refractories, electronic ceramics, and functional ceramics. The properties of Ca–ZrO2 materials are depending on the quality of Ca–ZrO2 powders. The main factors affecting the quality of powder are sintering temperature and the drying effect. This paper applied modern microwave drying technology to dry Ca–ZrO2 powder. The impact of initial mass, microwave heating power, and initial moisture content on the drying of Ca–ZrO2 were explored. The results showed that the average drying rate increased with the rise of initial mass, microwave heating power, and initial moisture content. Wang and Singh, Page, and Quadratic Model were applied to fit Ca–ZrO2 with an initial moisture content of 5.6%, mass of 30 g, and microwave output power of 400 W. The results displayed that the Page model had a better fitting effect. It was also applicable to other different initial moisture content, original mass, and microwave heating power. The diffusion coefficient calculated by Fick's second law displayed that with the increase of initial mass, initial moisture content, and microwave heating power of Ca–ZrO2, the effective diffusion coefficient increased first and then declined. When the Ca–ZrO2 of microwave heating power was 640 W, mass was 30 g, and the moisture content was 5.65%, the effective diffusion coefficients of zirconia were 1.42533 × 10?13, 2.91806 × 10?13, 5.652.2471 × 10?13 m2/s, respectively. To determine the activation energy of microwave dried zirconia, using the relationship between microwave power and activation energy, the activation energy of microwave dried zirconia was calculated to be ?23.39 g/W. This paper aims to rich experimental data for the industrial application of microwaves to strengthen dried zirconia and propose a theoretical basis.  相似文献   

5.
Because of lignite’s high moisture content, it must be dried before most applications. Microwave radiation may be suitable for efficient drying because of its special heating properties. This study investigated the drying behavior of lignite samples from eastern Inner Mongolia by microwave thermogravimetric analysis. Three stages of microwave drying were observed: preheating, fast weight loss, and falling rate drying periods. Samples’ surface temperatures increased dramatically during preheating, dropped slightly in the second period, and rose again in the final period. The measured surface temperature was <95°C during microwave heating. The overall moisture content decreased more rapidly under higher microwave power. Fine lignite particles (diameter <0.2?mm) and lump samples (particle size 10?mm) dried better than granular lignite (particle size 1–2?mm). The samples also underwent slight natural drying (1–2% point reduction in moisture content) after microwave treatment. The critical moisture content of lignite (11–15% under experimental conditions) was redefined. Energy consumption was analyzed to evaluate the feasibility of the proposed drying process.  相似文献   

6.
Abstract

Evaporative drying of lignite is an energy intensive process. In this study, the heat pump is integrated with a lignite drying system to decrease the energy consumption rate of lignite drying. The performance of heat pump drying is energetically and exergetically evaluated with developed models. Results show that the power consumption rates to dehydrate 1?kg of water from raw lignite in the heat pump drying system without and with lignite preheater are 660.82 and 585.62?kJ (kg H2O)?1, respectively. Exergetic analysis indicates that most exergy is destructed in the condenser and the evaporator in the heat pump drying. The case of lignite-to-electricity process (i.e., a lignite-fired power plant integrated with heat pump drying) is studied to examine additional benefits of heat pump drying to the downstream industrial processes that consume dried lignite. Thermodynamic and economic models are developed. Net efficiency of the lignite-to-electricity process can be increased by 1.4 and 1.57 percentage points for heat pump drying without and with lignite preheater, respectively. Preliminary economic analysis shows that the integration of heat pump drying without and with lignite preheater can earn additional 1.42 and 1.73 million USD, respectively. The influences of drying system and heat pump parameters are also analyzed.  相似文献   

7.
阐述了褐煤中水分的赋存形态及其在受热过程中的转化行为。分析了不同提质干燥过程中褐煤物化结构的变化,探讨了褐煤物化结构与水分脱除及复吸的关系。结果表明:褐煤表面丰富的孔结构和大量亲水性含氧官能团是其水分较高的主要原因。干燥提质过程中,孔结构坍塌和交联反应的剧烈程度对于抑制复吸非常重要。加热过程中褐煤表面活性含氧官能团的数量、形成和分解行为直接影响褐煤的持水和吸氧能力,含氧官能团的分解会使煤的疏水性增加,自燃倾向性降低。最后说明褐煤提质的关键是水分的高效安全脱除,脱水煤表面氧化和水分复吸的抑制,并提出了抑制提质褐煤复吸水分的可能途径是依据不同组成、结构褐煤的水分赋存和脱除行为,针对性地改善干燥操作条件,调节样品孔径分布、比表面积和表面含氧官能团的存在形态及数量。  相似文献   

8.
Drying sewage sludge is a highly energy-extensive process. For this reason, this work seeks to identify a reagent that can enhance the effectiveness of the drying process. In this study, drying experiments of sewage sludge were conducted at drying temperatures ranging from 100 to 160°C. NaHCO3 was selected as the drying reagent, which was added to the sludge before drying. The thin-layer drying characteristics of the sludge and sludge/NaHCO3 mixtures were later investigated and compared. Various mathematical models were used to simulate the sludge drying curves. It was found that adding 2 and 6% (wet basis) of NaHCO3 to the sludge was effective in improving the moisture diffusion during the drying process, whereas the drying rate of the sludge/NaHCO3 mixtures decreased when the addition of NaHCO3 was further increased to 10% (wet basis). When the addition ratio was 2%, the increase in the maximum drying rate was the largest. With coefficients of determination (R2) over 0.9999, the modified Midilli model proposed in this study was observed to be the most suitable model to describe thin-layer drying of sludge relative to the other models examined in terms of R2, reduced χ2, root mean square error, and residual sum of squares. The values of the diffusion coefficients at each temperature were obtained using Fick’s second law of diffusion, which varied from 3.700?×?10?9 to 1.085?×?10?8?m2/s over the temperature range (i.e., 100–160°C). The activation energy of moisture diffusion was determined to be 27.57?kJ/mol. Scanning electron microscope images of the dried sludge and sludge/NaHCO3 mixtures indicated that the porosity of the sludge after drying increased with an increase in the NaHCO3 addition ratio. Overall, the results suggested that NaHCO3 is a suitable reagent to improve the drying efficiency of the sludge.  相似文献   

9.
Acid-treated bentonite-supported Ni catalysts were prepared using a microwave-assisted drying process, characterized and used for the hydrogenation of nitrobenzene to aniline. Microwave-assisted drying of the catalyst reduced the drying time from 3?h with a traditional heating method to 10?min; after drying by microwave irradiation, the acid-treated bentonite-supported Ni catalysts were more stable due to a smaller crystallite size, a higher dispersion of metallic Ni and stronger interactions between Ni and the acid-treated bentonite support than the traditional drying method. Catalytic studies conducted at 300°C with a nitrobenzene liquid hourly space velocity of 3.6?mL?g?1?h?1 and a H2 gas hourly space velocity of 4,800?mL?g?1?h?1 indicated that the catalyst prepared using the microwave heating method maintained a nitrobenzene conversion of >99.9% with an aniline selectivity >93% during a 60-h reaction. In addition, the catalyst dried using a traditional method only functioned for 16?h.  相似文献   

10.
11.
Abstract

Microwave rotary drum drying of whole garlic bulbs was investigated for the Aspergillus niger inactivation and moisture removal. The Weibull and Bigelow models were applied to microbial inactivation data. Garlic bulbs with initial moisture content in the range 1.95–2.14?g water g?1?dry matter were dried up to 0.06?g water g?1?dry matter. The microwave power density (PD) was varied from 1.03 to 2.67 Wg?1 at 1.5 and 2.0 pulsation ratios (PRs). Effect of PD and PR on A. niger inactivation, product temperature, moisture diffusivity, moisture ratio, drying rate, color, and sensory parameters was studied. Page model was found to be a better fit for microwave rotary drying characteristics of whole garlic bulbs. Microwave rotary drum drying resulted in the average log reduction of A. niger between 1.12 and 1.60. Weibull model predicted A. niger inactivation better than the Bigelow model as it considered the nonlinearity associated with a microbial population in the sterilization process. Garlic powder prepared at 2.0 PR and 1.85 Wg?1 PD was chosen as the best process based on sensory score. The cracking and peeling of garlic cloves were observed during microwave rotary drum drying. The SEM images confirmed the increase in the pore size of the microwave treated garlic sample than the untreated garlic which might be the reason for cracking and loosening of peel in garlic.  相似文献   

12.
S. Deepika 《Drying Technology》2018,36(14):1719-1737
The different pretreatments were given to lemon slices to inactivate pectinesterase and peroxidase enzymes and to dry the product rapidly using infrared–microwave hot air combination. Osmotic pretreatment followed by 1-min steam blanching was found to reduce moisture in the product, increase solid content, and inactivate enzymes in lemon slices while maintaining negligible dry matter and juice sac loss. The infrared hot air was found effective in partial drying of pretreated lemon slices up to 1 hour without entering in drastic falling-rate period. Therefore, after 1?h microwave hot air was used to complete the drying process. The optimum infrared drying condition was found at 3000?W/m2 radiation intensity, 90°C air temperature, 100?mm distance between lamp and product, and 1.5?m?s?1 air velocity. In microwave finish drying, the power density of 0.30?W?g?1, 89.9°C air temperature, and 0.5?m?s?1 air velocity were found to result in the best product. The hybridization of osmotic–steam blanching and the two drying methods overcame the problems of browning, extended falling-rate periods, improper power distribution, and quality deterioration. Also, the higher values of moisture diffusivities were observed during hybrid drying.  相似文献   

13.
A drying technique using a combination of a contact ultrasound apparatus and a hot air dryer is developed to investigate the strengthening effect of contact ultrasound on hot air drying. The effects of drying parameters such as ultrasound power and drying temperature on drying characteristics, effective moisture diffusivity (Deff), microstructure, glass transition temperature (Tg), rehydration ratio, and color difference are discussed. The results show that the application of contact ultrasound causes a significant acceleration of internal mass transfer, and higher ultrasound power applied leads to faster drying rate. The effect of ultrasound power on drying rate decreases along with the reduction of moisture content during drying process. The increase in drying temperature significantly reduces drying time but has a little negative influence on the strengthening effect of ultrasound. Deff values range from 1.0578?×?10?10 to 5.4713?×?10?10?m2/s in contact ultrasound-assisted hot air drying of purple-fleshed sweet potato and increase significantly with an increase in drying temperature as well as ultrasound power. The microstructure of purple-fleshed sweet potato is greatly different at different ultrasound powers during contact ultrasound-assisted hot air drying and shows more microchannels and dilated intercellular spaces in the cross-section of purple-fleshed sweet potato micrographs at higher ultrasound power. Contact ultrasound application during hot air drying could improve the mobility of water and consequently reduce glass transition temperature. Lower color difference and higher rehydration ratio could be achieved as drying temperature decreases and ultrasound power increases. The increase in contact ultrasound power could reduce energy consumption of drying process up to 34.60%. Therefore, contact ultrasound assistance is a promising method to enhance hot air drying process.  相似文献   

14.
A recurrent self-evolving fuzzy neural network (RSEFNN) predictive control scheme is developed for microwave drying process in this paper. During microwave drying process, the temperature, power absorption efficiency, and moisture variation characteristic in the drying material cannot be exactly known for the complex application environment. So a RSEFNN is constructed to predict the microwave drying process. Based on the RSEFNN, to achieve a highly efficient and safe microwave drying process, a multiple objectives predictive control algorithm is constructed to get a suitable input power over a prediction horizon. To identify the feasibility of the proposed recurrent self-evolving fuzzy neural network predictive control (RSEFNNPC) algorithm, a simulation of Red Maple and an actual application of lignite drying were analyzed in this paper. In the Red Maple drying process, temperature and moisture content are chosen as control objectives. As the simulation results show, the RSEFNNPC could achieve multiple objectives optimization. In the actual lignite drying process, the difference between lignite temperature and presupposed temperature was below 2?K. The difference between RSEFNN prediction and actual sampling temperature was below 1?K.  相似文献   

15.
Shengli lignite coal, originated from inner Mongolia China, contains significantly high amount of moisture (more than 30%) which can cause spontaneous combustion or other application problems. Thus, it is of interest to understand the heat and mass transfer mechanism of the low-rank lignite drying under different drying environments such as N2, CO2, air, argon, and helium. In this study, fundamental drying experiments with different drying agents were performed on coal samples using thermogravimetric analysis (TGA) method. Lignites with size of 0.045–0.075?mm were heated up from ambient temperature to a target temperature of 175°C under different environments at heating rates of 5, 10, 20, 40, and 80 °C/min, respectively. It was found that thermal conductivity of drying media, heating rate, and initial moisture content are three most significant factors affecting lignite drying process. The highest moisture release rate and the lowest Tpeak (when maximum moisture release rate occurred) were observed when drying with helium due to its highest evaporation constant (i.e., highest thermal conductivity). Moreover, higher heating rate and moisture content resulted in higher evaporation rate and Tpeak. In the meantime, the classical D2 law, which is used to simulate the liquid fuel droplet combustion, was further developed to describe the “group effect” of moisture evaporation process of solid fuel during drying. The D2 law well explains the experiment results. Finally, the structures of the dried lignite samples under different drying mediums were investigated through scanning electron microscopy studies. It was found that lignite coals shrank and became more compact when dried out, especially with drying agent CO2.  相似文献   

16.
The effect of microwave output power and sample amount on effective moisture diffusivity were investigated using microwave drying technique on round okra (Hibiscus esculentus L.). The various microwave output powers ranging from 180 to 900 W were used for the determination of effective moisture diffusivity for constant sample amount of 100 g okra. To examine the effect of sample amount on effective moisture diffusivity, the samples in the range of 25–100 g were dried at constant microwave output power of 360 W. By increasing the microwave output powers and decreasing the sample amounts, the effective moisture diffusivity values ranged from 20.52 × 10?10 to 86.17 × 10?10 and 34.87 × 10?10 to 11.91 × 10?9 m2/s?1, respectively. The modeling studies were performed to illustrate the relationship between the ratio of the microwave output power to sample amount and effective moisture diffusivity. The relationship between drying constant and effective moisture diffusivity was also estimated.  相似文献   

17.
The drying kinetics of Chinese lignite in nitrogen fluidized-bed, superheated steam fluidized-bed and microwave were investigated. The changes in the mass as a function of drying time were measured under various drying conditions. The variations of moisture ratio with time were used to test ten different thin-layer empirical drying models given in the literature. In studying the consistency of all the models, some statistical tests, such as χ2, residual sum of squares (RSS) and F-value were also used as well as coefficient of determination R2. In nitrogen fluidized-bed and superheated steam fluidized-bed, the Midilli–Kucuk model best described the lignite drying process. Drying data in microwave were best described by the Page model, indicative of a difference in kinetics between the two drying methods. This difference was attributed to different heat transfer mechanisms under conventional and microwave drying conditions. The effects of drying parameters in nitrogen fluidized-bed, superheated steam fluidized-bed and microwave drying on the constants and coefficients of the selected models were studied by multiple regression analysis. The apparent diffusion coefficient of moisture in samples was obtained from the kinetics data and the apparent activation energies under nitrogen fluidized-bed, superheated steam fluidized-bed and microwave drying were found to be rather similar.  相似文献   

18.
The commercially available paprika at 16.25% (db) moisture was quickly finish-dried using microwaves at higher power density (5–25?W?g?1). The moisture diffusivity was estimated using Fick’s second law of diffusion and the generalized kinetic model was used to estimate the color degradation rates. The moisture diffusivity and color degradation showed a close correlation with the difference between the average product temperature (T) achieved due to microwave heating, and average glass transition temperature (Tg) of paprika. Acceleration in moisture diffusion and color degradation was observed with the rise in the difference between the T and Tg. Further, the color degradation rate showed correlation with monolayer moisture content, average moisture content, T, and Tg of paprika during finish drying. The constants of the Gordon and Taylor model showed the less plasticization effect of water. Also, Tg showed a good correlation between water activity and moisture content. The activation energies for moisture diffusion and color degradation were found to be 92.53 and 11.03?kJ mol?1, respectively. The microstructural analysis of finish-dried paprika showed the expanded and newly formed intercellular spaces. The developed correlations can be used to simulate heat and mass transfer operations such as drying and sterilization.  相似文献   

19.
Abstract

Using ultrasound (US) at microwave-assisted vacuum Frying (MVF) program was investigated to acquire better process efficacy and bodily high-quality attributes of fried edamame. Different power degrees of US (0, 150, 300, 600 W) and temperature (80, 90, and 100?°C) were utilized in a constant microwave power and frequency of 1000 W and 28?kHz during ultrasound and microwave-assisted vacuum frying (USMVF) process. Ten different mathematical models were employed to describe dehydration kinetics of the fried edamame, and nonlinear regression analysis was used to determine model parameters. Concerning fitting performance, the most suitable model was the two-term model. Drying kinetics, effective moisture diffusivity (De), activation energy (Ea), and physical properties of fried samples were evaluated in this newly designed USMVF equipment using different ultrasound power to the studied temperature range. By increasing the US power level, the calculated De increased from 1.947?×?10?9 to 4.742?×?10?9 m2/s. The results have revealed that the Ea of this fried edamame decreased significantly with increasing the US power level. The USMVF process at every frying temperature increased the drying kinetics and De when compared to the non-USMVF process. The USMVF samples always gave lower oil content and water activity in contrast to the non-USMVF samples. The color and texture properties of fried edamame were significantly improved and higher the US power level in the USMVF produced a better progress. Vitamin C and chlorophyll retention of fried edamame was highest in US600MVF process.  相似文献   

20.
For value-added utilization of high-humidity lignite, an investigation on its drying behavior was carried out, using a method of Microwave Thermogravimetric Analysis (MTGA). The characteristic of heat and mass transfer during drying process was studied. The effects of initial lignite mass on its drying process and energy consumption were also addressed. In addition, changes of lignite pore structure, sulfur content, and calorific value were tested after drying experiment. The results indicated that lignite microwave drying was divided into three stages: incubation stage, high-efficient dehydration stage, and deep dehydration stage. It was in agreement with the variation of temperature inside the sample. High-efficient dehydration stage and deep dehydration stage were separated at a critical moisture content. Microwave power and initial mass could be properly matched, which was effective to increase dehydration rate and decrease energy consumption. It was further noted that the best power for achieving the least energy consumption was in advance to that for achieving the greatest dehydration rate, especially for initial mass of 20?g and 25?g. The optimum power for initial mass of 20?g and 25?g was found to be 385?W and 539?W, respectively. Pore structure of dried lignite was basically deteriorated. Meanwhile, lignite microwave drying at 231?W for 6?min could lead to an increase of calorific value by 8.1% and a decrease of sulfur content by 68.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号