首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用0.18μmCMOS工艺设计并制造了一款新型的应用于无线局域网的双频段低噪声放大器。设计中,通过切换输入电感和负载电感,来使电路分别工作在2.4GHz和5.2GHz频段。在1.8V的电源电压下,在2.4GHz和5.2GHz两个频段上,其增益分别达到了11.5dB和10.2dB,噪声系数分别是3dB和5.1dB。芯片总面积是0.9mm×0.65mm。  相似文献   

2.
A single-chip dual-band 5.15-5.35-GHz and 2.4-2.5-GHz zero-IF transceiver for IEEE 802.11a/b/g WLAN systems is fabricated on a 0.18-/spl mu/m CMOS technology. It utilizes an innovative architecture including feedback paths that enable digital calibration to help eliminate analog circuit imperfections such as transmit and receive I/Q mismatch. The dual-band receive paths feature a 4.8-dB (3.5-dB) noise figure at 5.25 GHz (2.45 GHz). The corresponding sensitivity at 54 Mb/s operation is -76 dBm for 802.11a and -77 dBm for 802.11g, both referred at the input of the chip. The transmit chain achieves output 1-dB compression at 6 dBm (9 dBm) at 5 GHz (2.4 GHz) operation. Digital calibration helps achieve an error vector magnitude (EVM) of -33 dB (-31 dB) at 5 GHz (2.4 GHz) while transmitting -4 dBm at 54Mb/s. The die size is 19.3 mm/sup 2/ and the power consumption is 260 mW for the receiver and 320 mW (270 mW) for the transmitter at 5 GHz (2.4 GHz) operation.  相似文献   

3.
A single-chip dual-band tri-mode CMOS transceiver that implements the RF and analog front-end for an IEEE 802.11a/b/g wireless LAN is described. The chip is implemented in a 0.25-/spl mu/m CMOS technology and occupies a total silicon area of 23 mm/sup 2/. The IC transmits 9 dBm/8 dBm error vector magnitude (EVM)-compliant output power for a 64-QAM OFDM signal. The overall receiver noise figure is 5.5/4.5 dB at 5 GHz/2.4 GHz. The phase noise is -105 dBc/Hz at a 10-kHz offset and the spurs are below -64 dBc when measured at the 5-GHz transmitter output.  相似文献   

4.
This paper describes a high-performance WLAN 802.11a/b/g radio transceiver, optimized for low-power in mobile applications, and for co-existence with cellular and Bluetooth systems in the same terminal. The direct-conversion transceiver architecture is optimized in each mode for low-power operation without compromising the challenging RF performance targets. A key transceiver requirement is a sensitivity of -77 dBm (at the LNA input) in 54 Mb/s OFDM mode while in the presence of a GSM1900 transmitter interferer. The receiver chain achieves an overall noise figure of 2.8/3.2 dB, consuming 168/185 mW at 2.8 V for the 2.4/5GHz bands, respectively. Signal loopback and transmit power detection techniques are used in conjunction with the baseband modem processor to calibrate the transmitter LO leakage and the transceiver I/Q imbalances. Fabricated in a 70 GHz f/sub T/ 0.25-/spl mu/m SiGe BiCMOS technology for system-in-package (SiP) use, the dual-band, tri-mode transceiver occupies only 4.6 mm/sup 2/.  相似文献   

5.
A low-power fullband 802.11a/b/g WLAN transceiver in 0.15-mum CMOS technology is described. The zero-IF transceiver achieves a receiver noise figure of 4.4/4 dB for the 2.4-GHz/5-GHz bands, respectively. The corresponding sensitivity at 54-Mb/s operation is -72 dBm for 802.11g and -74 dBm for 802.11a using actual PER measurement. An on-chip PA delivers 20 dBm output P1-dB. A new I/Q compensation scheme is implemented in local oscillator (LO) and an image rejection of better than 52 dB is observed. The transmitter delivers 10/1.5 dBm (2.4-/5-GHz) EVM-compliant output power for a 64-QAM OFDM signal at 54-Mb/s. The power consumption is 117/135 mW (1.8-V) in the receive mode and 570/233.1 mW in the transmit mode for 2.4/5 GHz, respectively. The low power consumption, high integration and robustness (-40 to 140degC) make this transceiver suitable for portable applications  相似文献   

6.
实现了一个应用于IEEE 802.11b无线局域网系统的2.4GHz CMOS单片收发机射频前端,它的接收机和发射机都采用了性能优良的超外差结构.该射频前端由五个模块组成:低噪声放大器、下变频器、上变频器、末前级和LO缓冲器.除了下变频器的输出采用了开漏级输出外,各模块的输入、输出端都在片匹配到50Ω.该射频前端已经采用0.18μm CMOS工艺实现.当低噪声放大器和下变频器直接级联时,测量到的噪声系数约为5.2dB,功率增益为12.5dB,输入1dB压缩点约为-18dBm,输入三阶交调点约为-7dBm.当上变频器和末前级直接级联时,测量到的噪声系数约为12.4dB,功率增益约为23.8dB,输出1dB压缩点约为1.5dBm,输出三阶交调点约为16dBm.接收机射频前端和发射机射频前端都采用1.8V电源,消耗的电流分别为13.6和27.6mA.  相似文献   

7.
提出了一种用于双波段GPS接收机的宽带CMOS频率合成器.该GPS接收机芯片已经在标准O.18μm射频CMOS工艺线上流片成功,并通过整体功能测试.其中压控振荡器可调振荡频率的覆盖范围设计为2~3.6GHz,覆盖了L1,L2波段的两倍频的频率点.并留有足够的裕量以确保在工艺角和温度变化较大时能覆盖所需频率.芯片测试结果显示,该频率综合器在L1波段正常工作时的功耗仅为5.6mW,此时的带内相位噪声小于-82dBc/Hz,带外相位噪声在距离3.142G载波1M频偏处约为-112dBc/Hz,这些指标很好地满足了GPS接收芯片的性能要求.  相似文献   

8.
This paper presents the first single-chip direct-conversion 77-85 GHz transceiver fabricated in SiGe HBT technology, intended for Doppler radar and millimeter-wave imaging, particularly within the automotive radar band of 77-81 GHz. A 1.3 mm times 0.9 mm 86-96 GHz receiver is also presented. The transceiver, fabricated in a 130 nm SiGe HBT technology with fT/fMAX of 230/300 GHz, consumes 780 mW, and occupies 1.3 mm times 0.9 mm of die area. Furthermore, it achieves 40 dB conversion gain in the receiver at 82 GHz, a 3 dB bandwidth extending from 77 to 85 GHz at 25degC, and covering the entire 77-81 GHz band up to 100degC, record 3.85 dB DSB noise figure measured at 82 GHz LO and 1 GHz IF, and an IP1dB of -35 dBm. The transmitter provides + 11.5 dBm of saturated output power at 77 GHz, and a divide64 static frequency divider is included on-die. Successful detection of a Doppler shift of 30 Hz at a range of 6 m is shown. The 86-96 GHz receiver achieves 31 dB conversion gain, a 3 dB bandwidth of 10 GHz, and 5.2 dB DSB noise figure at 96 GHz LO and 1 GHz IF, and -99 dBc/Hz phase noise at 1 MHz offset. System-level layout and integration techniques that address the challenges of low-voltage transceiver implementation are also discussed.  相似文献   

9.
双频带通滤波器的优化设计   总被引:1,自引:0,他引:1  
利用阶跃阻抗谐振器优化,设计了一个工作在无线局域网(2.4/5.2GHz)的双频带通滤波器。通过奇、偶模分析,在阶跃阻抗谐振器理论计算公式基础上,根据不同的阻抗比条件,阶跃阻抗谐振器谐振频率比与阶跃阻抗高、低阻抗电长度之比的关系曲线,可以方便地确定阶跃阻抗谐振器的谐振频率和电长度,通过sonnet电路仿真软件验证了设计的合理性,并给出了用于无线通信2.4、5.2 GHz双频带通滤波器的设计结果。该带通滤波器可以分别在2.4、5.2 GHz处得到较好的通带性。由于交叉耦合的存在,该双频带通滤波器在两个通带端各有一个传输零点,以此来提高滤波器的通带频率选择性。最后,测量结果与仿真结果基本吻合。  相似文献   

10.
基于TSMC 0.13μm CMOS工艺设计并实现了应用于IMT-Advanced和UWB系统的双频段宽带频率合成器中的电感电容压控振荡器(LC-VCO)。此压控振荡器的设计采用了开关电流源、开关交叉耦合对和噪声滤波等技术,以优化电路的相位噪声,功耗,振荡幅度,调谐范围等性能。为达到宽的调谐范围,核心电路采用了4比特可重构的开关电容调谐阵列。整个芯片包括焊盘面积为1.11′0.98 mm2。测试结果表明,在1.2V电源电压下,两个频段压控振荡器所消耗的电流分别为3mA和4.5mA,压控振荡器的调谐范围为3.86~5.28GHz和3.14~3.88GHz。在振荡频率3.5GHz和4.2GHz上,1MHz频偏处,压控振荡器的相位噪声分别为-123dBc/Hz与-119dBc/Hz。  相似文献   

11.
《Electronics letters》2007,43(20):1096-1098
A CMOS dual-band ultra-wideband low noise amplifier (LNA) with interference rejection is presented. The proposed LNA employs a current reuse structure to reduce power consumption and an active notch filter to produce in-band rejection in the 5 GHz WLAN frequency band. The load tank of the current reuse stage is optimised to provide an additional out-band attenuation in the 2.4 GHz WLAN band. Measurement shows a peak gain of 19.7 dB in the low band (3-5 GHz) and 20.3 dB in the high band (6-10 GHz), while the in-band and out-band maximum rejections are 19.6 and 12.8 dB, respectively.  相似文献   

12.
A fully integrated CMOS transceiver tuned to 2.4 GHz consumes 46 mA in receive mode and 47 mA in transmit mode from a 2.7-V supply. It includes all the receive and transmit building blocks, such as frequency synthesizer, voltage-controlled oscillator (VCO), power amplifier, and demodulator. The receiver uses a low-IF architecture for higher level of integration and lower power consumption. It achieves a sensitivity of -82 dBm at 0.1% BER, and a third-order input intercept point (IIP3) of -7 dBm. The direct-conversion transmitter delivers a GFSK modulated spectrum at a nominal output power of 4 dBm. The on-chip voltage controlled oscillator has a close-in phase-noise of -120 dBc/Hz at 3-MHz offset  相似文献   

13.
A low power high gain differential UWB low noise amplifier (LNA) operating at 3-5 GHz is presented.A common gate input stage is used for wideband input matching; capacitor cross coupling (CCC) and current reuse techniques are combined to achieve high gain under low power consumption. The prototypes fabricated in 0.18-μm CMOS achieve a peak power gain of 17.5 dB with a -3 dB bandwidth of 2.8-5 GHz, a measured minimum noise figure (NF) of 3.35 dB and -12.6 dBm input-referred compression point at 5 GHz, while drawing 4.4 mA from a 1.8 V supply. The peak power gain is 14 dB under a 4.5 mW power consumption (3 mA from a 1.5 V supply). The proposed differential LNA occupies an area of 1.01 mm~2 including test pads.  相似文献   

14.
正A low power fast settling multi-standard CMOS fractional-N frequency synthesizer is proposed.The current reusing and frequency presetting techniques are adopted to realize the low power fast settling multi-standard fractional-N frequency synthesizer.An auxiliary non-volatile memory(NVM) is embedded to avoid the repetitive calibration process and to save power in practical application.This PLL is implemented in a 0.18μm technology. The frequency range is 0.3 to 2.54 GHz and the settling time is less than 5μs over the entire frequency range.The LC-VCO with the stacked divide-by-2 has a good figure of merit of-193.5 dBc/Hz.The measured phase noise of frequency synthesizer is about-115 dBc/Hz at 1 MHz offset when the carrier frequency is 2.4 GHz and the reference spurs are less than -52 dBc.The whole frequency synthesizer consumes only 4.35 mA @ 1.8 V.  相似文献   

15.
An ultrawideband common-gate low noise amplifier with tunable interference rejection is presented. The proposed LNA embeds a tunable active notch filter to eliminate interferer at 5-GHz WLAN and employs a common-gate input stage and dual-resonant loads for wideband implementation. This LNA has been fabricated in a 0.18-$mu$m CMOS process. The measured maximum power gain is 13.2 dB and noise figure is 4.5–6.2 dB with bandwidth of 3.1–10.6 GHz. The interferer rejection is 8.2 dB compared to the maximum gain and 7.6 dB noise figure at 5.2 GHz , respectively. The measured input P1dB is ${-} $11 dBm at 10.3 GHz. It consumes 12.8 mA from 1.8-V supply voltage.   相似文献   

16.
A CMOS dual-band multi-mode RF front-end for the global navigation satellite system receivers of all GPS,Bei-Dou,Galileo and Glonass systems is presented.It consists of a reconfigurable low noise amplifier(LNA),a broadband active balun,a high linearity mixer and a bandgap reference(BGR) circuit.The effect of the input parasitic capacitance on the input impedance of the inductively degenerated common source LNA is analyzed in detail.By using two different LC networks at the input port and the switched cap...  相似文献   

17.
This paper presents a single-chip dual-band CMOS direct-conversion transceiver fully compliant with the IEEE 802.11a/b/g standards. Operating in the frequency ranges of 2.412-2.484 GHz and 4.92-5.805 GHz (including the Japanese band), the fractional-N PLL based frequency synthesizer achieves an integrated (10 kHz-10 MHz) phase noise of 0.54/spl deg//1.1/spl deg/ for 2/5-GHz band. The transmitter error vector magnitude (EVM) is -36/-33 dB with an output power level higher than -3/-5dBm and the receiver sensitivity is -75/-74 dBm for 2/5-GHz band for 64QAM at 54 Mb/s.  相似文献   

18.
张浩  李智群  王志功 《半导体学报》2010,31(11):115008-8
本文给出了一个应用于GPS、北斗、伽利略和Glonass四种卫星导航接收机的高性能双频多模射频前端。该射频前端主要包括有可配置的低噪声放大器、宽带有源单转双电路、高线性度的混频器和带隙基准电路。详细分析了寄生电容对源极电感负反馈低噪声放大器输入匹配的影响,通过在输入端使用两个不同的LC匹配网络和输出端使用开关电容的方法使低噪声放大器可以工作在1.2GHz和1.5GHz频带。同时使用混联的有源单转双电路在较大的带宽下仍能获得较好的平衡度。另外,混频器采用MGTR技术在低功耗的条件下来获得较高的线性度,并不恶化电路的其他性能。测试结果表明:在1227.6MHz和1557.42MHz频率下,噪声系数分别为2.1dB和2.0dB,增益分别为33.9dB和33.8dB,输入1dB压缩点分别0dBm和1dBm,在1.8V电源电压下功耗为16mW。  相似文献   

19.
A CMOS LC voltage controlled oscillator (VCO) based on current reused topology with low phase noise and low power consumption is presented for IEEE 802.11a (Seller et al. A 10 GHz distributed voltage controlled oscillator for WLAN application in a VLSI 65 nm CMOS process, in: IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 3–5 June, 2007, pp. 115–118.) application. The chip1 is designed with the tail current-shaping technique to obtain the phase noise −116.1 dBc/Hz and power consumption 3.71 mW at the operating frequency 5.2 GHz under supply voltage 1.4 V. The second chip of proposed VCO can achieve power consumption Sub 1 mW and is still able to maintain good phase noise. The current reused and body-biased architecture can reduce power consumption, and better phase noise performance is obtained through raising the Q value. The measurement result of the VCO oscillation frequency range is from 5.082 GHz to 5.958 GHz with tuning range of 15.8%. The measured phase noise is −115.88 dBc/Hz at 1 MHz offset at the operation frequency of 5.815 GHz. and the dc core current consumption is 0.71 mA at a supply voltage of 1.4 V. Its figure of merit (FOM) is −191 dBc/Hz. Two circuits were taped out by TSMC 0.18 μm 1P6M process.  相似文献   

20.
A fully integrated dual-band transceiver is implemented in 0.18-/spl mu/m CMOS and is compliant with the IEEE 802.11a/b/g standards. The direct-conversion transceiver occupies 12 mm/sup 2/ in a QFN-40 package. A fractional-N synthesizer operates at twice the channel frequency, covering continuously bands from 4.9 to 5.9 GHz, as well as the 2.4-GHz band. The 5- and 2.4-GHz receivers achieve a sensitivity level below -73 dBm in the 54-Mb/s mode and below -93 dBm in the 6-Mb/s mode, while consuming 230 mW. A fast RSSI-channel power-detection system allows to power-down signal processing in the listen mode. The 5- and 2.4-GHz transmitters implement a wideband Cartesian feedback loop for enhanced EVM performances and improved spectrum masks compliance. The transmitters deliver -2-dBm average power with an EVM of 3% in the 54-Mb/s mode while consuming 300 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号