首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
CuInSe2 films were electrodeposited on mechanical polished Mo substrates. The applied potential was adjusted to get a stoichiometric composition. The as-deposited films were annealed in a high vacuum system for a short time. The films have been characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, Auger electron spectroscopy. The results indicate that the crystallization of the films was greatly improved by the short time vacuum annealing process without significant change in composition. The capacitance–voltage measurement shows characteristic p-type behaviors. This annealing process after electrodeposition was proved to be a useful method to prepare the polycrystalline CuInSe2 films for solar cell application.  相似文献   

2.
Using the Bridgman method, ingots of CuInSe2 have been grown, which are microcrackfree, void-free and adhesion-free. From these, p-type substrates have been obtained for the fabrication of preliminary CIS/CdS/ZnO and CIS/CdS/CdO photovoltaic cells, where the window layers were deposited, respectively, by rf sputtering from a ZnO target and by dc reactive sputtering from a Cd target and where the CdS buffer layer was deposited by a chemical bath method. These cells have yielded approximate illuminated jjsc, Voc,η and FF values, respectively, up to 28 mA/cm2, 0.42 V, 5% and 0.41 for effective areas of 7 to 22 mm2.  相似文献   

3.
CuInSe2 thin films were formed from the selenization of co-sputtered Cu–In alloy layers. These layers consisted of only two phases, CuIn2 and Cu11In9, over broad Cu–In composition ratio. The concentration of Cu11In9 phase increased by varying the composition from In-rich to Cu-rich. The composition of co-sputtered Cu–In alloy layers was linearly dependent on the sputtering power of Cu and In targets. The metallic layers were selenized either at a low pressure of 10 mTorr or at 1 atm Ar. A small number of Cu–Se and In–Se compounds were observed during the early stage of selenization and single-phase CuInSe2 was more easily formed in vacuum than at 1 atm Ar. Therefore, CuInSe2 films selenized in vacuum showed smoother surface and denser microstructure than those selenized at 1 atm. The results showed that CuInSe2 films selenized in vacuum had good properties suitable for a solar cell.  相似文献   

4.
Radiation damages due to 8 MeV electron irradiation in electrical properties of CuInSe2 thin films have been investigated. The n-type CuInSe2 films in which the carrier concentration was about 3×1016 cm−3, were epitaxially grown on a GaAs(0 0 1) substrate by RF diode sputtering. No significant change in the electrical properties was observed under the electron fluence <3×1016 e cm−2. As the electron fluence exceeded 1017 e cm−2, both the carrier concentration and Hall mobility slightly decreased. The carrier removal rate was estimated to be about 0.8 cm−1, which is slightly lower than that of III–V compound materials.  相似文献   

5.
CuInSe2/CdS thin-film heterojunction solar cells were fabricated entirely by chemical bath deposition technique. The illuminated JV characteristics of the devices prepared with different thicknesses of CdS and CuInSe2 were studied. The typical solar cell parameters obtained for the best cell are: Voc = 365 mV, Jsc = 12 mA/cm2, FF = 61%, and η = 3.1% under an illumination of 85 mW/cm2 on a cell of active area 0.1 cm2. The JV and CV characteristics under dark condition and the spectral response were also studied for the best cell. The diode quality factor obtained is 1.7.  相似文献   

6.
Direct energy gap materials, e.g. CdTe, CuInSe2, CuInGaSe2, CdSe, ZnP2 and Zn3P2, are the most interesting for thin-film solar cell applications. Among the various methods of preparation of these films, chemical bath deposition and electrodeposition deserve special attention because they have been shown to be inexpensive, low-temperature and non-polluting methods. Based on Pourbaix diagrams of CdS, CdTe, CuInSe2, CdSe, etc., drawn from basic considerations, the best parameters for their electrodeposition are deduced. Theoretical considerations on the chemical-bath deposition of CdS, CdSe and Sb2S3 are also indicated. In particular, the role of the complexing agent and of the ligands in chemical bath deposition quality is discussed, as are the uniformity and stability of the films. The photoelectrochemical, Schottky barrier and heterojunction solar cell properties based on chemically and electrochemically deposited thin films with heteropolyacids are shown. Future trends for chemically and electrochemically deposited polycrystalline thin films are addressed. Results from very recent work done in the improvement of chemically and electrochemically deposited thin films are presented. Significant results obtained on advanced CdS/CdTe, CdS/CIS and CdS/CIGS solar cells developed by industry and by laboratory groups worldwide are indicated. Emerging low cost materials or/and less environmental hazards materials which may introduce solar cells into worldwide market are considered in the conclusion.  相似文献   

7.
Amorphous films of CuInSe2 were deposited on glass substrate by flash evaporation of source materials. The films were found to be p-type semiconductors. The direct optical band-gap energy was obtained to be 1.21–1.41 eV. The film DC conductivity ranged from 1.2–5.7 S cm−1 at 285 K for different film thickness with corresponding activation energy of 55.5–301 meV. From temperature dependence of conductivity, the carrier transport was interpreted to be due to band conduction above 270 K.  相似文献   

8.
By analyzing CdTe/CdS devices fabricated by vacuum evaporation, a self consistent picture of the effects of processing on the evolution of CdTe cells is developed which can be applied to other fabrication methods. In fabricating CdTe/CdS solar cells by evaporation, a 400°C CdCI2 heat treatment is used which recrystallizes the CdTe and interdiffuses the CdS and CdTe layers. The interdiffuson can change the bandgap of both the CdTe and CdS which modifies the spectral response of the solar cell. After this heat treatment a contacting/doping procedure is used which converts the CdTe conductivity to p-type by diffusion from Cu from the contact. Finally, the cell is treated with Br2CH3,OH which improves both Voc and FF. Analogous process steps are used in most fabrication processes for CdTe/CdS solar cells.  相似文献   

9.
A simple close-spaced vapour transport (CSVT) system has been designed and fabricated. Copper indium diselenide (CuInSe2) thin films of wide range of thickness (4000–60000 Å) have been prepared using the fabricated CSVT system at source temperatures 713, 758 and 843 K. A detailed study on the deposition temperature has been made and the temperature profile along with the reaction kinetics is reported. The composition of the chemical constituents of the films has been determined by energy dispersive X-ray analysis. The structural characterization of the as-deposited CuInSe2 films of various thicknesses has been carried out by X-ray diffraction method. The diffractogram revealed that the CuInSe2 films are polycrystalline in nature with chalcopyrite structure. The structural parameters such as lattice constants, axial ratio, tetragonal distortion, crystallite size, dislocation density and strain have been evaluated and the results are discussed. The surface morphology of the as-deposited CuInSe2 thin films has been studied using scanning electron microscope. The transmittance characteristics of the CuInSe2 films have been studied using double beam spectrophotometer in the wavelength range 4000–15000 Å and the optical constants n and k are evaluated. The absorption coefficient has been found to be very high and is of the order of 105–106 m−1. CuInSe2 films are found to have a direct allowed transition and the optical band gap is found to be in the range 0.85–1.05 eV.  相似文献   

10.
SILAR deposition of CuInSe2 films was performed by using Cu2+–TEAH3 (cupric chloride and triethanolamine) and In3+–CitNa (indium chloride and sodium citrate) chelating solutions with weak basic pH as well as Na2SeSO3 solution at 70 °C. A separate mode and a mixed one of cationic precursor solutions were adopted to investigate effects of the immersion programs on crystallization, composition and morphology of the deposited CuInSe2 films. Chelating chemistry in two solution modes was deducted based on IR measurement. The XRD, XPS and SEM results showed that well-crystallized, smoothly and distinctly particular CuInSe2 films could be obtained after annealing in Ar at 400 °C for 1 h by using the mixed cationic solution mode.  相似文献   

11.
Room temperature measurements were made of electrical conductivity (σ), Hall coefficient (RH) and Seebeck coefficient (α) on filamentary samples of p-type CuInSe2 and CuIn1−xGaxSe2 with x0.3, cut from vertically grown Bridgman ingots. Analysis of the results was done on a two-carrier basis, due to the higher ratio of electron to hole mobility (b) in these materials compared to elemental semiconductors. This treatment yielded a preferred b-value of 5 and to lower calculated hole concentrations than (RHe)−1 and higher hole mobilities than RHσ, based on a one-carrier interpretation. This effect was particularly marked in p-type samples with a hole concentration below 1017 cm−3, where even a few percent of minority electrons can play an important role.  相似文献   

12.
By sulfurization of E---B evaporated precursors, CZTS(Cu2ZnSnS4) films could be prepared successfully. This semiconductor does not consist of any rare-metal such as In. The X-ray diffraction pattern of CZTS thin films showed that these films had a stannite structure. This study estimated the optical band gap energy as 1.45 eV. The optical absorption coefficient was in the order of 104cm−1. The resistivity was in the the order of 104 Ω cm and the conduction type was p-type. Fabricated solar cells, Al/ZnO/CdS/CZTS/Mo/Soda Lime Glass, showed an open-circuit voltage up to 400 mV.  相似文献   

13.
In the present paper we report, effect of conjugated polymer (polyaniline) impinging in nanostructured CdS/CuInSe2 heterojunction thin film solar cell. The heterojunction architecture for the solar cell is achieved by sandwiching the conjugated conducting polymer in n and p type of wide band gap semiconducting material by multilayer chemical deposition methods onto the ITO coated glass substrate at room temperature. The obtained multilayer thin film heterojunction of ITO/CdS/Polymer/CuInSe2/Ag has been characterized for structural, compositional, optical and solar cell characteristics by illuminating it to 100 mW/cm2 intensity light source. The X-ray diffraction pattern (XRD) confirms formation of CdS/CuInSe2 phase while on polymer impinging the crystallite size observed to be increased from 13 to 19 nm. The compositional analysis by energy dispersive X-ray spectra (EDAX) supports presence of expected elements in the heterojunction. The energy band gap calculated from absorbance spectra shows significant shift in its value from polymer and CdS/CuInSe2 band gap. IV analysis shows increase in conversion efficiency from 0.26 in CdS/CuInSe2 to 0.55% in CdS/Polymer/CuInSe2 heterojunction upon illumination.  相似文献   

14.
The composition and the microstructure evolutions of CuInSe2 thin films under single-bath electrodeposition processes were investigated. It was found that the film composition was mainly determined by the [Se4+]/[Cu2+] ratios in solution, but the film microstructure is strongly dependent on the initial concentrations of Se4+, Cu2+, and In3+ precursors. Higher initial concentrations of Cu2+ and In3+ in solution are beneficial for the fabrication of compact CuInSe2 thin films with highly crystallized and large grain sized chalcopyrite phase. The microstructure evolution suggests that prior adsorption and reduction of Cu2+ ions and the formation of Cu2Se compound on the substrate can promote the nucleation, growth, and coarsening of CuInSe2 crystal to form a high quality thin film during the electrodeposition processes.  相似文献   

15.
The effect of the substrate temperature on the optoelectronic properties of ZnO-based thin films prepared by rf magnetron sputtering has been studied. Three different targets (Zn/Al 98/2 at%, ZnO:Al 98/2 at% and ZnO:Al2O3 98/2 wt%) have been investigated in order to compare resulting samples and try to reduce the substrate temperature down to room temperature. From the ZnO:Al2O3 target, transparent conductive zinc oxide has been obtained at 25°C with the average optical transmission in the 400–800 nm wavelength range, T = 80–90% and resistivity, = 3−5 × 10−3 Ωcm. In Al:Zn0 layers, the spatial distribution of the electrical properties across the substrate placed parallel to the target has been improved by depositing at high substrate temperatures, above 200°C. Besides, owing to diffusion processes of CuInSe2 and CdS take place at 200°C, an AI:ZnO/CdS/CuInSe2 polycrystalline solar cell made with the Al:ZnO deposited at 25°C as the transparent conductive oxide, has shown a more efficient photovoltaic response, η = 6.8%, than the one measured when the aluminium-doped zinc oxide has been prepared at 200°C, η = 1.8%.  相似文献   

16.
Nanostructured CdS was grown by electrodeposition of cadmium sulfide inside a porous alumina template. Uniform pore size and spacing in the template was achieved when the starting material for the template was aluminum foil. Typical pore size was 45 nm. Nanostructured CdS was also deposited by electrodeposition on indium tin oxide (ITO)-coated glass and by solution growth on ITO-coated glass. Schottky diodes were formed on nanocrystalline CdS and the analysis of their current–voltage characteristics yielded a diode ideality factor (n) of 2.6 and a reverse saturation current density (JS) of 1.00×10−5 A/cm2. Corresponding values for the Schottky diode on polycrystalline CdS were 3.4 and 1.93×10−6 A/cm2.  相似文献   

17.
Twenty keV Li+ was implanted at room temperature into p- and n-conducting single crystalline CuInSe2 at fluences of 3.2×1015 and 3.2×1016 cm−2, respectively. The lithium depth profiles were measured using the neutron depth profiling technique. The diffusional deviation of the profiles from the ballistic expectation was simulated by a numerical computer calculation. From these examinations it is concluded that(a) lithium suffers considerable radiation-enhanced mobility during the implantation process,(b) the radiation-enhanced Li diffusion depends somewhat on the conductivity state of CuInSe2,(c) the radiation-enhanced Li diffusion decreases with increasing implantation fluence,(d) whereas at the lower fluence, Li shows some thermal mobility, the latter is negligible after high fluence implantation.The diffusional redistribution can be described in all cases reasonably well by depth independent diffusion without trapping, and insofar differs from previous examinations of hydrogen in CuInSe2.  相似文献   

18.
Using argon as a diluent of SiH4, undoped hydrogenated microcrystalline silicon (μc-Si:H) films, having σD10−5 S cm−1, were prepared at a very high deposition rate of 36 Å/min. Micrograins were identified with several well-defined crystallographic orientations. The effect of variation of Ar-dilution on the electrical and structural properties of Si:H films were studied systematically. Addition of H2 to the Ar-diluted SiH4 plasma improved the network structure by eliminating defects, introducing structural reorientation and grain growth, although, reducing the deposition rate. Accordingly, highly conducting (σD10−3S cm−1) undoped μc-Si:H film was achieved utilizing energy released by de-excitation of metastable state of Ar (denoted as Ar*), in association with network modulation by atomic hydrogen in the plasma.  相似文献   

19.
A comparative study of the cell performance of CIGS thin-film solar cells fabricated using ZnO:Al and ZnO:B window layers has been carried out. ZnO:B films were deposited by RF magnetron sputtering using an undoped ZnO target in a B2H6–Ar gas mixture. The short-circuit current (Jsc) was found to improve upon the replacement of the ZnO:Al layer with ZnO:B layers. This improvement in Jsc is attributed to an increase in quantum efficiency due to the higher optical transmission of the ZnO:B layer in the near-infrared region. The best cell fabricated with a MgF2/ZnO:B/i-ZnO/CdS/CIGS/Mo structure yielded an active area efficiency of 18.0% with Voc=0.645 V, Jsc=36.8 mA/cm2, FF=0.76, and an active area of 0.2 cm2 under AM 1.5 illumination.  相似文献   

20.
Dense CuInSe2 of high quality, prepared by the fusion technique in evacuated quartz ampoule from stoichiometric melt, crystallizes in the chalcopyrite structure. Compositional analysis carried out by secondary ion mass spectrometry (SIMS) and energy dispersive spectroscopy (EDS) indicates a uniform distribution of elements through the depth and a composition close to the stoichiometry. The diffuse reflectance spectrum gives a band gap at 0.94 eV. The electrical conductivity follows an Arrhenius-type law with activation energy of 23 meV in conformity with polarons hopping. Above 320 °C, CuInSe2 undergoes an irreversible oxidation. The thermal variation of the thermopower indicates p-type behavior attributed to copper deficiency and a hole mobility μ300 K of 0.133 cm2 V−1 s−1, thermally activated. In KCl media, the compound exhibits an excellent chemical stability with a corrosion rate of 8 μmol cm−2 month−1. The photo-electrochemical properties, investigated for the first time on the ingots, confirm the p-type conductivity. From the capacitance measurements, the flat band potential (Vfb=−0.62VSCE) and the holes density (NA=4×1017 cm−3) were determined. The valence band, located at 4.43 eV below vacuum, is made up of mainly Se orbital with little admixture of Cu character. The change of the electrolyte causes a variation in the potential Vfb (dVfb/dpH=−0.058 V pH−1) indicating strong OH adsorption. The fill factor in S2− media was found to be 0.54; such result was corroborated by semi-logarithmic plots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号