首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lasing mode behavior of a multiple quantum well (MQW) distributed feedback (DFB) laser was measured when intensity-modulated orthogonally polarized transverse magnetic (TM) mode light was injected. The 3-dB bandwidth of the frequency response shows a trend different from that observed with conventional bias current modulation: at high bias currents, it decreases with increasing bias current. The maximum bandwidth of 3 dB was observed when the normalized bias current was 4, and it reached 16 GHz at this bias current. The gain saturation coefficients for the transverse electric (TE) and TM modes estimated from these results were ∈pE; 2.5×10-17 cm3 and ∈qE 5.7×10-18 cm3 for the TE mode, and ∈pM: 6.0×10-17 cm3 and ∈qM: 2.0×10-14 cm3 for the TM mode  相似文献   

2.
Gain saturation coefficients of unstrained- and strained-layer multiple-quantum-well lasers were measured experimentally. These coefficients were higher in lasers that had compressive strain in their active-layer wells: 2.45×10-17 cm3 with unstrained wells and 12.6×10-17 cm3 with strained wells. The higher gain saturation coefficient in lasers with strained active-layer wells is related to their higher linear TE mode gain coefficient. The linearity factor (K factor) between a laser's damping constant and the square of the laser's resonant frequency decreased slightly with the introduction of the strain in the laser's active layer wells. This factor, however, took the value of about 0.2×10-9 s for each of these lasers  相似文献   

3.
The linewidth enhancement factor of an InGaAs/InGaAsP strained multiquantum well optical amplifier was measured interferometrically. It varied from 3 to 18 over the wavelength range from 1500 to 1600 nm with injection currents varying from one to four times the lasing threshold of the uncoated device. A rate equation model gave differential gain and refractive index change per carrier, respectively, in the range 0.3 to 2.5×10-15 cm2 and -5 to -8×10-20 cm3  相似文献   

4.
We fabricated an (InAs)1/(GaAs)2 short-period superlattice (SPS) strained quantum-well laser at 1.07 μm by MOVPE. The SPS active layer has 10 periods of (InAs)1/(GaAs)2 and an average mismatch of over 2.2%. In highly strained conditions the device showed a lasing wavelength of 1.07 μm, a threshold of 130 A/cm2, and a characteristic temperature T0 of 175 K. We measured the gain characteristic by the Hakki and Paoli method at LED conditions and obtained a high differential gain of 2.0×10-15 cm2 at the threshold current  相似文献   

5.
Tunable Cr4+:YSO Q-switched Cr:LiCAF laser   总被引:1,自引:0,他引:1  
Tunable passive Q-switching (781 nm to 806 nm at 300 K) of a flash-lamp pumped Cr3+:LiCaAlF6 (Cr:LiCAF) laser with a Cr4+:Y2SiO5 (Cr4+:YSO) broad-band solid-state saturable absorber has been realized. Typical pulse widths of the Q-switched laser output ranged from 40 ns to 80 ns, depending on the lasing wavelength. Spectral narrowing and reduced beam diameter with the use of the saturable absorber were observed. The ground state and the excited state absorption cross sections of the Cr4+:YSO absorber were found by bleaching experiments to be (7.0±1.4)×10-19 cm2 and (2.3±0.5)×10-19 cm2 at 694 nm, respectively. Numerical simulation was utilized to simulate the Cr:LiCAF passive Q-switching with Cr4+ :YSO solid-state saturable absorber  相似文献   

6.
An analytical expression for the intrinsic gain suppression factor based on carrier heating is derived. The theory shows good agreement with the published experimental value of ∈=+1.5×10-17 cm3 for in-plane lasers. For the first time, a negative gain suppression factor for particular laser designs is predicted and experimentally observed. A negative gain suppression factor can lead to the elimination of damping in semiconductor lasers. Using vertical-cavity surface-emitting lasers, a negative gain suppression factor of -2.2×10-17 cm3 is observed  相似文献   

7.
The experimental performance of a gain-switched Ti:sapphire laser oscillator pumped by a frequency-doubled Q-switched Nd:YAG laser system is presented for a variety of operating conditions. A theoretical model developed for this oscillator predicts well its performance. The observed curved input-output energy plots for the oscillator result from the kinetics of gain switching and fluorescence decay during the gain buildup period. Fluorescence decay also produces observed oscillator thresholds higher than those normally predicted by the standard gain-equals-loss condition. Gain-switched parasitic modes, with a higher threshold but shorter round-trip time than the resonator mode, cause the resonator mode to oscillate only over a finite range of pump energies. Spectroscopic investigations show that the Ti:sapphire cross-section spectrum is well fit by a Poisson distribution, giving a peak cross section of 3×10-19 cm2 for the π polarization  相似文献   

8.
The spectroscopic properties of Ho3+ laser channels in KGd(WO4)2 crystals have been investigated using optical absorption, photoluminescence, and lifetime measurements. The radiative lifetimes of Ho3+ have been calculated through a Judd-Ofelt (JO) formalism using 300-K optical absorption results. The JO parameters obtained were Ω2=15.35×10-20 cm2, Ω 4=3.79×10-20 cm2, Ω6 =1.69×10-20 cm2. The 7-300-K lifetimes obtained in diluted (8·1018 cm-3) KGW:0.1% Ho samples are: τ(5F3)≈0.9 μs, τ( 5S2)=19-3.6 μs, and τ(5F5 )≈1.1 μs. For Ho concentrations below 1.5×1020 cm-3, multiphonon emission is the main source of non radiative losses, and the temperature independent multiphonon probability in KGW is found to follow the energy gap law τph -1(0)=βexp(-αΔE), where β=1.4×10-7 s-1, and α=1.4×103 cm. Above this holmium concentration, energy transfer between Ho impurities also contributes to the losses. The spectral distributions of the Ho3+ emission cross section σEM for several laser channels are calculated in σ- and π-polarized configurations. The peak a σEM values achieved for transitions to the 5I8 level are ≈2×10-20 cm2 in the σ-polarized configuration, and three main lasing peaks at 2.02, 2.05, and 2.07 μm are envisaged inside the 5I75I8 channel  相似文献   

9.
The single-pass (50 cm) amplifier performance of an atmospheric-pressure ArF laser pumped by a 65-ns full-width-at-half-maximum short-pulse electron beam was investigated theoretically for a wide range of excitation rates (0.1-2.0 MW/cm3 ). Atmospheric mixtures of Ne, Ar, and F2 (three mixtures of Ar=40%, 70%, and Ne-free) were studied. A kinetic numerical model of the ArF amplifier with a Ne buffer system was constructed. A one-dimensional propagation treatment considered the gain depletion and saturation absorption spatially and temporally along the optical axis. In this model the rate constants for electron quenching of ArF* of 1.6×10-7, 1.9×10-7, and 2.4×10 -7 cm3/s were used for Ar concentration of 40, 70 percent, and Ar/F2 mixture, respectively  相似文献   

10.
The differential gain of long wavelength GaInNAs-based quantum film (QF) lasers and highly strained GaInAs-based QF lasers have been investigated for the first time. These lasers were grown by gas-source molecular beam epitaxy, and include a small amount of Sb to improve the crystalline quality. GaInNAsSb single quantum well (SQW) ridge lasers that oscillate at 1.258 μm have an extremely large differential gain of 1.06×10-15 cm2 in spite of the SQW lasers; therefore GaInNAsSb lasers are suitable for high-speed lasers in the long wavelength region  相似文献   

11.
High-performance multiquantum-well 1.55 μm InP-based tunneling injection lasers are fabricated using a conventional single mode ridge waveguide fabrication process and characterized. The lasers consist of an eight quantum-well strain-compensated gain region and a 30-Å InP tunneling barrier. The bandwidth of these lasers is measured to be 20 GHz with a damping limited bandwidth extracted from the K-factor (determined from optical modulation measurements) of 26 GHz. To our knowledge, this is the highest measured bandwidth recorded for an InP-based simple ridge waveguide structure. The differential gain is measured to be as high as 1×10-15 cm2, with a measured gain compression coefficient ϵ of 5×10-17 cm3. It is shown that the K-factor can also be extracted solely from measurements of the small signal electrical impedance. The carrier escape time τesc is determined to be 0.5 ns, independent of bias. This high frequency performance is achieved with a very simple device structure at room temperature under constant drive currents  相似文献   

12.
叶伟  崔立堃  常红梅 《电子学报》2019,47(6):1344-1351
具有高介电常数的栅绝缘层材料存在某种极化及耦合作用,使得ZnO-TFTs具有高的界面费米能级钉扎效应、大的电容耦合效应和低的载流子迁移率.为了解决这些问题,本文提出了一种使用SiO2修饰的Bi1.5Zn1.0Nb1.5O7作为栅绝缘层的ZnO-TFTs结构,分析了SiO2修饰对栅绝缘层和ZnO-TFTs性能的影响.结果表明,使用SiO2修饰后,栅绝缘层和ZnO-TFTs的性能得到显著提高,使得ZnO-TFTs在下一代显示领域中具有非常广泛的应用前景.栅绝缘层的漏电流密度从4.5×10-5A/cm2降低到7.7×10-7A/cm2,粗糙度从4.52nm降低到3.74nm,ZnO-TFTs的亚阈值摆幅从10V/dec降低到2.81V/dec,界面态密度从8×1013cm-2降低到9×1012cm-2,迁移率从0.001cm2/(V·s)升高到0.159cm2/(V·s).  相似文献   

13.
Bandgap-engineered W/Si1-xGex/Si junctions (p+ and n+) with ultra-low contact resistivity and low leakage have been fabricated and characterized. The junctions are formed via outdiffusion from a selectively deposited Si0.7Ge 0.3 layer which is implanted and annealed using RTA. The Si 1-xGex layer can then be selectively thinned using NH4OH/H2O2/H2O at 75°C with little change in characteristics or left as-deposited. Leakage currents were better than 1.6×10-9 A/cm2 (areal), 7.45×10-12 A/cm (peripheral) for p+/n and 3.5×10-10 A/cm2 (peripheral) for n+/p. W contacts were formed using selective LPCVD on Si1-xGex. A specific contact resistivity of better than 3.2×10-8 Ω cm2 for p +/n and 2.2×10-8 Ω cm2 for n+/p is demonstrated-an order of magnitude n+ better than current TiSi2 technology. W/Si1-xGe x/Si junctions show great potential for ULSI applications  相似文献   

14.
An InGaAs/InAlAs double-heterojunction bipolar transistor (DHBT) on InP(n) grown by molecular-beam epitaxy (MBE) that exhibits high DC performance is discussed. An n+-InAs emitter cap layer was used for nonalloyed contacts in the structure and specific contact resistances of 1.8×10-7 and 6.0×10-6 Ω-cm2 were measured for the nonalloyed emitter and base contacts, respectively. Since no high-temperature annealing is necessary, excellent contact surface morphology on thinner base devices can easily be obtained. In devices with 50×50-μm2 emitter area, common-emitter current gains as high as 1500 were achieved at a collector current density of 2.7×103 A/cm2 . The current gain increased up to 2000 for alloyed devices  相似文献   

15.
We describe a powerful method for precisely measuring polarization crosstalk dependence on length for birefringent waveguides which uses optical low coherence interference between excited and orthogonally coupled light waves. This method is applied to 10-m long silica-based waveguides with the total polarization crosstalks of 8.9×10-3 and 7.5×10-3. The spatial resolution is 10 cm and the measurement error for a waveguide part longer than 1 m is ⩽10%. A comparison of measured and theoretical crosstalk curves for the waveguides enables us to confirm that the bends in the waveguides are the main origin of the crosstalk. The polarization crosstalk per bent section is ~4×10-5  相似文献   

16.
Gain and output coupling characteristics of the CW chemical oxygen-iodine laser (COIL) are determined experimentally by means of varying the output coupling method. Under the conditions that the Cl2 flow rate is 11.8 mmol/s, the I2 molar flow rate is from 20 to 50 μmol/s, and the duct pressure is 200 Pa, the following were obtained from the experimental data: maximum values of output power of 58 W, and optimal output coupling factor of 1.50%, a resonator efficiency of 4.8%, an unsaturated small-signal gain of 1.55×10-3 cm-1, a threshold small-signal gain of 1.31×10-3 cm-1, a saturation intensity of 1150 W/cm2, intraresonator losses of 9%, and an atomic iodine concentration of 2.85×1014 cm-3. A comparison of these results to the published data of other COIL systems is presented  相似文献   

17.
P-n-p In0.52Al0.48As/In0.53Ga0.47 As double-heterojunction bipolar transistors with a p+-InAs emitter cap layer grown by molecular-beam epitaxy have been realized and tested. A five-period 15-Å-thick In0.53Ga0.47As/InAs superlattice was incorporated between the In0.53Ga0.47As and InAs cap layer to smooth out the valence-band discontinuity. Specific contact resistance of 1×10-5 and 2×10-6 Ω-cm2 were measured for nonalloyed emitter and base contacts, respectively. A maximum common emitter current gain of 70 has been measured for a 1500-Å-thick base transistor at a collector current density of 1.2×103 A/cm2. Typical current gains of devices with 50×50-μm2 emitter areas were around 50 with ideality factors of 1.4  相似文献   

18.
The carrier-induced index change was measured using a novel injection-reflection technique in combination with differential carrier lifetime data. The observed relation between index change and injected carrier density at bandgap wavelength is nonlinear and is approximately given by δnact=-6.1×10-14 ( N)0.66 for a 1.5-μm laser and δn act=-1.3×10-14 (N)0.68 for a 1.3-μm laser. The carrier-induced index change for a 1.3-μm laser at 1.53-μm wavelength is smaller and is given by δn act=-9.2×10-16 (N)0.72   相似文献   

19.
Saturable absorbers based on impurity and defect centers incrystals   总被引:1,自引:0,他引:1  
Saturation of near-infrared absorption and transmission dynamics are investigated in tetravalent-chromium-doped Gd3Sc2 Ga3O12, Gd3Sc2Al3 O12, and Mg2SiO4 crystals, as well as in reduced SrTiO3 using 20 ps 1.08 μm laser pulses. An absorption cross section of (5±0.5)×10-18 cm2 in garnets and (2.3±0.3)×10-18 cm2 in forsterite is estimated for the 3A 2-3T2 transition of tetrahedral Cr4+. Q-switched and ultra-short pulses are realized in neodymium lasers using chromium-doped crystals as the saturable absorbers. Saturation of free-carrier absorption with ultra-short relaxation time is observed in SrTiO3 at 108-10 10 W/cm2 pump intensities, while at 1010-1011 W/cm2 three-photon interband transitions predominate. The free-carrier absorption cross section is estimated to be (2.7±0.3)×10-18 cm2  相似文献   

20.
The authors report measurements of optically induced carrier-dependent refractive index changes and their saturation in an InGaAs single quantum well centered within a linear multiple quantum well guided-wave Fabry-Perot resonator using diode laser sources. A low-excitation nonlinear refractive cross-section, σn=-1×10-19 cm3, was deduced for probe wavelengths near the TM (transverse magnetic) absorption edge, falling only to σn=-3.1×10-20 cm3, at over 0.16 μm from the band edge. For an incident irradiance of 18 kW/cm 2, refractive index changes in the InGaAs quantum well as large as -0.16 were deduced near the absorption edge, while the index change at a wavelength 0.16 μm from the absorption edge was -0.055. This large off-resonant index change is attributed to an enhanced free-carrier contribution within a 2D system  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号