首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mobility models of nodes have an important role in the evaluation of data dissemination protocols in vehicular ad hoc networks (VANETs). Many recent researches have used the constant velocity mobility models while vehicles have acceleration and their speeds change as they move. Because of the dynamic nature of VANETs, the network changes from a densely connected to the sparsely connected environment in a short time. In sparsely connected networks, it is said that vehicles move in clusters. In this paper, the constant acceleration mobility calculations for the sparsely connected network and its characteristics have been presented. These characteristics are usable for the evaluation of the data dissemination protocols in VANETs. The results show that acceleration affects the number of viewed clusters during the trip and the number of vehicles within a cluster. In fact, acceleration has a significant impact on the network sparsely connection. This matter shows that the appropriate data dissemination protocol should be used to study the acceleration effect which is applicable in sparse networks. The analysis in this research provides the necessary background for better understanding and accurate calculations for the evaluation of data dissemination in VANETs.  相似文献   

2.
In this paper, we propose the connectivity-aware minimum-delay geographic routing (CMGR) protocol for vehicular ad hoc networks (VANETs), which adapts well to continuously changing network status in such networks. When the network is sparse, CMGR takes the connectivity of routes into consideration in its route selection logic to maximize the chance of packet reception. On the other hand, in situations with dense network nodes, CMGR determines the routes with adequate connectivity and selects among them the route with the minimum delay. The performance limitations of CMGR in special vehicular networking situations are studied and addressed. These situations, which include the case where the target vehicle has moved away from its expected location and the case where traffic in a road junction is so sparse that no next-hop vehicle can be found on the intended out-going road, are also problematic in most routing protocols for VANETs. Finally, the proposed protocol is compared with two plausible geographic connectivity-aware routing protocols for VANETs, A-STAR and VADD. The obtained results show that CMGR outperforms A-STAR and VADD in terms of both packet delivery ratio and ratio of dropped data packets. For example, under the specific conditions considered in the simulations, when the maximum allowable one-way transmission delay is 1 min and one gateway is deployed in the network, the packet delivery ratio of CMGR is approximately 25% better than VADD and A-STAR for high vehicle densities and goes up to 900% better for low vehicle densities.  相似文献   

3.
4.
High mobility of nodes in vehicular ad hoc networks (VANETs) may lead to frequent breakdowns of established routes in conventional routing algorithms commonly used in mobile ad hoc networks. To satisfy the high reliability and low delivery‐latency requirements for safety applications in VANETs, broadcasting becomes an essential operation for route establishment and repair. However, high node mobility causes constantly changing traffic and topology, which creates great challenges for broadcasting. Therefore, there is much interest in better understanding the properties of broadcasting in VANETs. In this paper we perform stochastic analysis of broadcasting delays in VANETs under three typical scenarios: freeway, sparse traffic and dense traffic, and utilize them to analyze the broadcasting delays in these scenarios. In the freeway scenario, the analytical equation of the expected delay in one connected group is given based on statistical analysis of real traffic data collected on freeways. In the sparse traffic scenario, the broadcasting delay in an n‐vehicle network is calculated by a finite Markov chain. In the dense traffic scenario, the collision problem is analyzed by different radio propagation models. The correctness of these theoretical analyses is confirmed by simulations. These results are useful to provide theoretical insights into the broadcasting delays in VANETs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The characteristics of vehicular ad hoc networks (VANETs) make the design of routing protocol a great challenge. In this paper, we propose a vehicle density and load aware routing protocol for VANETs called VDLA. VDLA adopts sequential selection of junctions to construct the route. The selection is based on the real‐time vehicle density, the traffic load, and the distance to the destination. The network information is collected by a decentralized mechanism. Through factoring in these metrics, the packets are avoided being sent to roads where network is disconnected, and the network load is balanced to mitigate network congestion. The intermediate junctions are selected before the packet reaches a junction to reduce the unnecessary hops. Our study also investigates the impact of the high mobility of the nodes. An analytical framework is proposed to analyze the mobility. Based on the analysis, the traditional Hello scheme is enhanced to improve the accuracy of the neighbor table. In the simulation, we compare VDLA with greedy perimeter coordinator routing and GpsrJ+, which are geographic routings protocols proposed for VANETs. The results validate the superiority of VDLA in terms of end‐to‐end delay and packet delivery rate. And the superiority holds in different scenarios. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The need for routing based on store-and-carry forwarding has been motivated in sparse vehicular ad hoc networks (VANETs), since the traditional end-to-end unicast routing is infeasible due to the network disconnection problem. In store-and-carry based routing, the end-to-end message delivery delay is dominated by the store-and-carry procedure rather than the wireless transmission. Therefore, the end-to-end delay in such sparse VANETs can be further reduced by replicating multiple copies of the message to other nodes when possible, i.e., multi-copy routing, to increase the chance of finally finding the destination, which we call this gain as multi-copy diversity. In this paper, we present an analytic framework to evaluate the performance of routing by assessing the multi-copy diversity gain in sparse VANETs. By using this model, we first derive an upper and lower-bound of end-to-end routing delay in sparse VANETs. Our analytic results show that a high level of multi-copy diversity gain is achieved when the network is partially connected, which is in contrast to the conventional expectation that multi-copy routing performs better in severely disconnected networks. Second, we propose a new adaptive multi-copy VANET routing scheme called AMR by exploiting these analytic results. AMR adapts to the local network connectivity and increases the level of multi-copy diversity at significantly reduced routing overhead compared to the well known epidemic routing. We validate the accuracy of our analytic model and the performance of AMR via simulation studies.  相似文献   

7.
Routing for disruption tolerant networks: taxonomy and design   总被引:5,自引:0,他引:5  
Communication networks, whether they are wired or wireless, have traditionally been assumed to be connected at least most of the time. However, emerging applications such as emergency response, special operations, smart environments, VANETs, etc. coupled with node heterogeneity and volatile links (e.g. due to wireless propagation phenomena and node mobility) will likely change the typical conditions under which networks operate. In fact, in such scenarios, networks may be mostly disconnected, i.e., most of the time, end-to-end paths connecting every node pair do not exist. To cope with frequent, long-lived disconnections, opportunistic routing techniques have been proposed in which, at every hop, a node decides whether it should forward or store-and-carry a message. Despite a growing number of such proposals, there still exists little consensus on the most suitable routing algorithm(s) in this context. One of the reasons is the large diversity of emerging wireless applications and networks exhibiting such “episodic” connectivity. These networks often have very different characteristics and requirements, making it very difficult, if not impossible, to design a routing solution that fits all. In this paper, we first break up existing routing strategies into a small number of common and tunable routing modules (e.g. message replication, coding, etc.), and then show how and when a given routing module should be used, depending on the set of network characteristics exhibited by the wireless application. We further attempt to create a taxonomy for intermittently connected networks. We try to identify generic network characteristics that are relevant to the routing process (e.g., network density, node heterogeneity, mobility patterns) and dissect different “challenged” wireless networks or applications based on these characteristics. Our goal is to identify a set of useful design guidelines that will enable one to choose an appropriate routing protocol for the application or network in hand. Finally, to demonstrate the utility of our approach, we take up some case studies of challenged wireless networks, and validate some of our routing design principles using simulations.  相似文献   

8.
Routing in cooperative vehicular networks is a challenging task because of high mobility of vehicles and difficulty of localization. In this paper, we study the geocast routing problem in Vehicular Ad‐hoc NETworks (VANETs), which aims at delivering data to a specific group of mobile vehicles identified by their geographical location. Although many geocast routing protocols have been proposed, only partial inherent constraints of VANETs (such as mobility, internal network fragmentation problem, external network fragmentation problem, and overload) are taken into account. Therefore, we propose two novel and robust geocast routing protocols: the first one, called Robust Geocast Routing Protocol for Safety Applications (RGRP‐SA), is dedicated to road safety applications, while the second, namely, Robust Geocast Routing Protocol for Comfort Applications (RGRP‐CA), is designed for comfort applications. Simulations conducted in NS‐2 demonstrate that our safety‐oriented RGRP‐SA protocol outperforms Inter‐Vehicle Geocast protocol and Mobicast Routing Protocol in VANETs by sending up to 25% more packets, cutting the end‐to‐end delay in half, and solving the internal network fragmentation problem. Besides, it is also shown that our comfort‐oriented RGRP‐CA protocol serves well comfort applications with only light overhead by solving internal and external network fragmentation problems and providing more reliable data delivery (with a 25% higher packet delivery ratio) and higher network throughput utilization in comparison with Mobicast with Carry‐and‐Forward protocol. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
车载自组织网络(VANET)技术发展迅速,但由于其特殊的节点类型和信道特性,采用传统AdHoc网络路由协议无法取得满意的性能。实现高速可靠的数据传输速率,需要研究新兴的路由算法。基于贪婪算法的地理位置辅助路由是目前VANET路由的主流思路。文章认为基于这类思路的协议利用车载GPS装置、电子地图和下一代网络导航技术,能使路由发现和建立的时间大大缩短;结合已知的道路拓扑结构,选择多跳传输的最优路径,能避免路边建筑物的屏蔽效应,改善信道条件;动态评估道路上的车流密度,选择可靠性最高的传输路径,能很好地降低传输时延,提高网络吞吐能力。  相似文献   

10.
Wu  Jingbang  Lu  Huimei  Xiang  Yong  Cai  Bingying  Wang  Weitao  Liu  Ruilin 《Wireless Personal Communications》2017,97(4):5597-5619

Non-uniform node densities occur and intermittent links exist in highly dynamic ad hoc networks. To fit these networks, researchers usually combine delay tolerant network (DTN) routing protocols and mobile ad hoc network (MANET) routing protocols. The DTN protocol separates end-to-end links into multiple DTN links, which consist of multi-hop MANET links. Determining how to arrange DTN links and MANET links from source to end and dealing with intermittent links are performance issues, because node density ranges from sparse to dense and MANET protocols are much lighter than DTN protocols. This paper presents HMDTN, an application-network cross-layer framework, to solve the previously mentioned issues. The application layer in HMDTN supports disrupt tolerance with a large data buffer while adjusting the routing table on the basis of the connection state of links (link is disrupted or recovered), which are collected by the network layer. As a result, HMDTN increases the bandwidth utilization of intermittent links without compromising the efficiency of the MANET protocol in a reliable network. The HMDTN prototype was implemented based on Bytewalla (a Java version of DTN2) and Netfilter-based AODV. Experiments on Android devices show that unlike AODV and Epidemic, HMDTN increases the bandwidth utilization of intermittent links with a negligible increase of network overhead. In particular, HMDTN maintains the network throughput as high as regular network conditions even if the network undergoes relatively long-term (dozens of seconds or few minutes) data link disruptions.

  相似文献   

11.
岳俊梅  苏颖  李庆义 《激光杂志》2014,(12):132-137
车载网VANETs(Vehicular ad hoc networks)属于高速移动的无线网络,可供车辆安全、交通监测以及其他的商业服务的应用。然而,为此,提出混合式的位VANETs中车辆的快速移动导致通信链路频繁地断裂,增加路由开销,降低了可扩展性。议地理位置路由的特点。HLAR(Hybrid location-based ad hoc routing)。HLAR结合了反应式路由、HLAR克服了反应式路由的扩展性问题,并改善了地理位置路由对位置误差的敏感性。同时,通过理论分析,量可扩展性,并推导了路由开销的表达式。通过分析、仿真表明,提出的路由协议具有很好的扩展性,并降低了路由开销。在仿真中引入位置误差因子,结果表明。同时,与同类的其他协议相比,输时延方面HLAR到对位置误差具有很强的鲁棒性HLAR在数据传输率、端到端传提升。  相似文献   

12.
Information and communication technologies have changed the way of operations in all fields. These technologies also have adopted for wireless communication and provide low cost and convenient solutions. Vehicular ad hoc networks are envisioned with their special and unique intercommunication systems to provide safety in intelligent transportation systems and support large‐size networks. Due to dense and sparse traffic conditions, routing is always a challenging task to establish reliable and effective communication among vehicle nodes in the highly transportable environment. Several types of routing protocols have been proposed to handle high mobility and dynamic topologies including topology‐based routing, position and geocast routing, and cluster‐based routing protocols. Cluster‐based routing is one of the feasible solutions for vehicular networks due to its manageable and more viable nature. In cluster‐based protocols, the network is divided into many clusters and each cluster selects a cluster head for data dissemination. In this study, we investigate the current routing challenges and trend of cluster‐based routing protocols. In addition, we also proposed a Cluster‐based Routing for Sparse and Dense Networks to handle dynamic topologies, the high‐mobility of vehicle nodes. Simulation results show a significant performance improvement of the proposed protocol.  相似文献   

13.
In the last decade, underwater wireless sensor networks have been widely studied because of their peculiar aspects that distinguish them from common terrestrial wireless networks. Their applications range from environmental monitoring to military defense. The definition of efficient routing protocols in underwater sensor networks is a challenging topic of research because of the intrinsic characteristics of these networks, such as the need of handling the node mobility and the difficulty in balancing the energy consumed by the nodes. Depth‐based routing protocol is an opportunistic routing protocol for underwater sensor networks, which provides good performance both under high and low node mobility scenarios. The main contribution of our work is presenting a novel simulator for studying depth‐based routing protocol and its variants as well as novel routing protocols. Our simulator is based on AquaSim–Next Generation, which is a specialized tool for studying underwater networks. With our work, we improve the state of the art of underwater routing protocol simulators by implementing, among other features, a detailed cross‐layer communication and an accurate model of the operational modes of acoustic modem and their energy consumption. The simulator is open source and freely downloadable. Moreover, we propose a novel and completely distributed routing protocol, named residual energy–depth‐based routing. It takes into account the residual energy at the nodes' batteries to select the forwarder nodes and improve the network lifetime by providing a more uniform energy consumption among them. We compare its performance with that of depth‐based routing protocol and a receiver‐based routing protocol implementing a probabilistic opportunistic forwarding scheme.  相似文献   

14.

VANET (Vehicular Ad Hoc Network) is a significant term in ITS (intelligent transportation systems). VANETs are also mentioned as ITN (intelligent transportation Networks), which are used to enhance road safety in growing technology. The connectivity of nodes is a challenging one because of its high mobility and the sparse network connectivity must be handled properly during its initial deployment of a VANET for avoiding accidents. Quality of service (QoS) in VANET becomes a significant term because of its increasing dare about unique features, like poor link quality, high mobility, and inadequate transporting distance. Routing is the foremost issue in the wireless ad hoc network, which is used to transmit data packets significantly. This paper provides a crucial review of the classification of existing QoS routing protocols, cross-layer design approach and classification, and various performance parameters used in QoS routing protocols. The corresponding cross-layer protocols are overviewed, followed by the major techniques in cross-layer protocol design. Moreover, VANET is presented with many exclusive networking research challenges in precise areas such as security, QoS, mobility, effective channel utilization, and scalability. Finally, the paper concluded by various comparison discussion, issues, and challenges of several routing protocols for VANET. No. of publications over the period from 2010 to 2019 in various scientific sources also showed in this review. This survey provided the technical direction for researchers on routing protocols for VANET using QoS.

  相似文献   

15.
In order to avoid transmission collisions in mobile ad hoc networks (MANETs), a reliable and efficient medium access control (MAC) protocol is needed. Vehicular MANETs (VANETs) have vehicles as network nodes and their main characteristics are high mobility and speed. Active safety applications for VANETs need to establish reliable communications with minimal transmission collisions. Only few MAC protocols designed for MANETs can be adapted to efficiently work in VANETs. In this article we provide a short overview on some MANET MAC protocols, and then we summarize and qualitatively compare the ones suited for VANETs  相似文献   

16.
Vehicular ad-hoc networks (VANETs) is drawing more and more attentions in intelligent transportation system to reduce road accidents and assist safe driving. However, due to the high mobility and uneven distribution of vehicles in VANETs, multi-hops communication between the vehicles is still particularly challenging. Considering the distinctive characteristics of VANETs, in this paper, an adaptive routing protocol based on reinforcement learning (ARPRL) is proposed. Through distributed Q-Learning algorithm, ARPRL constantly learns and obtains the fresh network link status proactively with the periodic HELLO packets in the form of Q table update. Therefore, ARPRL’s dynamic adaptability to network changes is improved. Novel Q value update functions which take into account the vehicle mobility related information are designed to reinforce the Q values of wireless links by exchange of HELLO packets between neighbor vehicles. In order to avoid the routing loops caused in Q learning process, the HELLO packet structure is redesigned. In addition, reactive routing probe strategy is applied in the process of learning to speed up the convergence of Q learning. Finally, the feedback from the MAC layer is used to further improve the adaptation of Q learning to the VANETs environment. Through simulation experiment result, we show that ARPRL performs better than existing protocols in the form of average packet delivery ratio, end-to-end delay and number hops of route path while network overhead remains within acceptable ranges.  相似文献   

17.
An intermittently connected mobile ad hoc network is a special type of wireless mobile network without fully connected path between the source and destination most of the time. In some related works on mobility models, the missing realism of mobility model has been discussed. However, very few routing protocols based on realistic mobility models have been proposed so far. In this paper, we present a primate-inspired mobility model for intermittently connected mobile networks. Such a mobility model can represent and reflect the mobile features of humans. Traditional routing schemes in intermittently connected mobile networks fail to integrate the mobility model with routing strategy to fully utilize the mobility features. To overcome such a drawback, we propose a new routing scheme called primate-inspired adaptive routing protocol (PARP), which can utilize the features of the primate mobility to assist routing. Furthermore, our proposed protocol can determine the number of message copies and the routing strategy based on the walking length of the mobility model. The predictions of the walking lengths are implemented by a particle filter based algorithm. Our results demonstrate that PARP can achieve a better performance than a few typical routing protocols for intermittently connected mobile ad hoc networks.  相似文献   

18.
在无线自组织网络中,由于节点移动,网络拓扑结构变化频繁,所以路由协议的选择一直都是关键问题。该文采用NS2软件对两种主要的协议:动态源路由协议(DSR)和自组网按需距离矢量路由协议(AODV)进行了仿真。并且通过端到端延时、路由开销和分组投递率三种参数在不同条件下的数据对两种协议进行了评估。实验结果表明没有一种协议能够完全适用于自组网,对于特殊环境选择不同协议以满足需要。  相似文献   

19.
Li  Zhiyuan  Song  Yue  Bi  Junlei 《Wireless Networks》2019,25(1):379-398

The recent development of the vehicular ad hoc networks (VANETs) has motivated an increasing interest in vehicular services and applications, such as active safety service and the infotainment service. Effective data Dissemination has become more and more important in vehicular services sharing. In this paper, the connectivity characteristics of VANETs are theoretically analyzed and implemented to show the partial connections in vehicle to vehicle communication. Hence, we propose the connectivity-aware data dissemination (CADD) in partially connected VANETs will improve the data transmission capacity. In the CADD protocol, a new metric of the node forwarding capability estimation is introduced. The metric is designed by the combination the throughput function and the active connection time estimation. And then, the high efficiency data dissemination protocol is designed by the new metric. Simulation results show that the CADD protocol outperforms existing solutions in terms of the packet delivery ratio, the transmission delay, and the protocol overhead under the condition of the intermittent network connectivity.

  相似文献   

20.
In Mobile IP, the signaling traffic overhead will be too high since the new Care-of-Address (CoA) of the mobile node (MN) is registered all the way with the home agent (HA) whenever the MN has moved into a new foreign network. To complement Mobile IP in better handling local movement, several IP micro protocols have been proposed. These protocols introduce a hierarchical mobility management scheme, which divides the mobility into micro mobility and macro mobility according to whether the host's movement is intra-domain or inter-domain. Thus, the requirements on performance and flexibility are achieved, especially for frequently moving hosts. This paper introduces a routing protocol for multicast source mobility on the basis of the hierarchical mobile management scheme, which provides a unified global architecture for both uni- and multicast routing in mobile networks. The implementation of multicast services adopts an improved SSM (Source Specific Multicast) model, which combines the advantages of the existing protocols in scalability and mobility transparency. Simulation results show that the proposed protocol has better performance than the existing routing protocols for SSM source mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号