首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ergonomics》2012,55(8):637-650
This study compares three methods of predicting the effect of dual-frequency vibration on tracking performance, given a knowledge of the separate effects of each frequency. The total rms tracking error, rms input-correlated error and rms remnant in each axis of a two dimensional, pursuit tracking task during combined 315 and 500Hz vertical, whole-body vibration, were predicted from (a) the rms sum of weighted components, (b) the most severe component alone, and (c) the arithmetic sum of weighted components. The best predictions of total rms tracking error, compared with measured levels, were with method (a) and the worst with method (c). However the results of predictions of input-correlatd error and remnant tracking error components show that considerable caution should be exercised in the application of this result.  相似文献   

2.
《Ergonomics》2012,55(8):1193-1203
An experiment is described in which seated subjects performed first-order pursuit tracking with a simultaneous discrete task; performance with the discrete task was dependent on performance of the continuous task. Vertical, z-axis, whole-body sinusoidal vibration was presented at frequencies from 0·5 to 5·0Hz at an acceleration magnitude of 2·0 ms?2 r.m.s. in three separate sessions. In the first session, inter-subject and intra-subject variability masked any disruption caused by the vibration. After further training, all vibration frequencies disrupted performance of the continuous task. Disruption was independent of vibration frequency below 3·15Hz and increased at 4·0 and 5·0Hz. A visual mechanism was assumed to account for the increased disruption at these higher frequencies. Mechanisms which may have been responsible for the disruption below 3·15 Hz are discussed. Effects of vibration on the discrete task were attributable to disruption in performance of the continuous task. The results illustrate the importance of adequately training subjects prior to investigating vibration effects.  相似文献   

3.
This study investigated the effects of reclined backrest angles on cognitive and psycho-motor tasks during exposure to vertical whole-body vibration. Twenty participants were each exposed to three test stimuli of vertical vibration: 2-8 Hz; 8-14 Hz and 14-20 Hz, plus a stationary control condition whilst seated on a vibration platform at five backrest angles: 0° (recumbent, supine) to 90° (upright). The vibration magnitude was 2.0 ms(-2) root-mean-square. The participants were seated at one of the backrest angles and exposed to each of the three vibration stimuli while performing a tracking and choice reaction time tasks; then they completed the NASA-TLX workload scales. Apart from 22.5° seat backrest angle for the tracking task, backrest angle did not adversely affect the performance during vibration. However, participants required increased effort to maintain performance during vibration relative to the stationary condition. These results suggest that undertaking tasks in an environment with vibration could increase workload and risk earlier onset of fatigue. PRACTITIONER SUMMARY: Current vibration standards provide guidance for assessing exposures for seated, standing and recumbent positions, but not for semi-recumbent postures. This paper reports new experimental data systematically investigating the effect of backrest angle on human performance. It demonstrates how workload is elevated with whole-body vibration, without getting affected by backrest angle.  相似文献   

4.
To assist the human operator, modern auditory interfaces increasingly rely on sound spatialisation to display auditory information and warning signals. However, we often operate in environments that apply vibrations to the whole body, e.g. when driving a vehicle. Here, we report three experiments investigating the effect of sinusoidal vibrations along the vertical axis on spatial hearing. The first was a free-field, narrow-band noise localisation experiment with 5- Hz vibration at 0.88 ms? 2. The other experiments used headphone-based sound lateralisation tasks. Experiment 2 investigated the effect of vibration frequency (4 vs. 8 Hz) at two different magnitudes (0.83 vs. 1.65 ms? 2) on a left–right discrimination one-interval forced-choice task. Experiment 3 assessed the effect on a two-interval forced-choice location discrimination task with respect to the central and two peripheral reference locations. In spite of the broad range of methods, none of the experiments show a reliable effect of whole-body vibrations on localisation performance.  相似文献   

5.
《Ergonomics》2012,55(3):365-374
Standing people are exposed to whole-body vibration in many environments. This paper investigates the effects of horizontal whole-body vibration and standing posture on task performance. Sixteen participants were exposed to random vibration (up to 4 Hz) whilst performing a timed pegboard task in two standing postures. Objective and subjective indicators of performance were used. Time taken to complete the task increased progressively with increases in vibration magnitude. The fore-and-aft posture generally showed greater performance decrements and postural interruptions (>1.0 ms?2 root mean square) than the lateral. For both postures, performance was better during y-axis vibration than during x-axis vibration. Subjective ratings showed similar trends to time data. Impairments due to dual axis exposure were well predicted using root sum of squares calculations based on single axis components. These results indicate that best performance for those standing in moving environments will be achieved if individuals adopt a lateral posture with the most severe vibration in the y-axis.

Statement of Relevance: People have a need to work during transportation, either working for the transport provider or as a passenger. All modes of transport result in travellers being exposed to horizontal motion. This study demonstrates that task disturbance is affected by the orientation of the standing person to the vibration and, therefore, vehicle layouts can be optimised.  相似文献   

6.
Yu Huang 《Ergonomics》2014,57(8):1244-1255
How noise discomfort and vibration discomfort depend on duration has not previously been compared. For five durations (2, 4, 8, 16 and 32 s), the subjective equivalence of noise and vibration was investigated with all 49 combinations of 7 levels of noise and 7 magnitudes of whole-body vertical vibration. The rates of increase in discomfort with increasing duration were similar for noise and vibration, whereas they are currently assumed to be 3 dB per doubling of noise duration and 1.5 dB per doubling of vibration duration. The discomfort caused by low levels of noise was masked by high magnitudes of vibration, and the discomfort caused by low magnitudes of vibration was masked by high levels of noise. As stimuli durations increased from 2 to 32 s, the influence of vibration on the judgement of noise discomfort decreased, whereas the influence of noise on the judgement of vibration discomfort was unchanged.  相似文献   

7.
《Ergonomics》2012,55(10):1305-1310
When seeking to reduce vibration in transport it is useful to know how much reduction is needed for the improvement to be noticeable. This experimental study investigated whether relative difference thresholds for the perception of whole-body vertical vibration by seated persons depend on the frequency or magnitude of vibration. Relative difference thresholds for sinusoidal seat vibration were determined for 12 males at three vibration magnitudes and eight frequencies (2.5, 5, 10, 20, 40, 80, 160, 315 Hz) using the three-down-one-up method in conjunction with a two-interval-forced-choice procedure. The median relative difference thresholds were in the range 9.5% to 20.3%. There appeared to be a frequency-dependence at the lowest vibration magnitude, such that higher frequencies had higher difference thresholds. The relative difference thresholds depended on the vibration magnitude only at 2.5 and 315 Hz. The influence of both vibration frequency and vibration magnitude on the measured difference thresholds suggests that vision (at 2.5 Hz) and hearing (at 315 Hz) contributed to the perception of changes in vibration magnitude.  相似文献   

8.
C Corbridge  M J Griffin 《Ergonomics》1991,34(10):1313-1332
Two laboratory studies have investigated how handwriting ability and holding a cup of liquid depend on the characteristics of whole-body vertical vibration. The effects of vibration magnitude (0.16 to 2.5 ms-2 r.m.s.), vibration frequency (0.5 to 10 Hz), and vibration duration (2 cycles to 10 s) on handwriting were studied with 20 subjects. Subjects were asked to copy letters of the alphabet by writing on a hand-held surface. Writing speed decreased and subjective ratings of writing difficulty increased with increasing vibration magnitude, particularly in the frequency range 4 to 8 Hz. Writing difficulty also increased with increasing duration of vibration. A 10 s exposure to 5 Hz vibration at 2.0 ms-2 r.m.s. resulted in subjective estimates corresponding to 'extremely difficult'. The effects of vibration magnitude (0.63 to 1.6 ms-2 r.m.s.), vibration frequency (0.5 to 10 Hz), and vibration duration (2 cycles to 10 s) on the spilling of liquid from a hand-held cup were also investigated in a group of 20 subjects. The probability of spilling the liquid, the quantity of liquid spilt, and subject's estimates of the probability of spillage were determined for all conditions. Greatest interference with the task occurred at 4 Hz, with the lowest vibration magnitude (0.63 ms-2 r.m.s.) causing measured and estimated spillage probabilities of approximately 85%. The interference was much less at other frequencies, with 0.63 ms-2 r.m.s. causing less than 10% measured probability of spillage below 3 Hz and above 5 Hz. The estimated probability of spillage was generally greater than the observed probability of spillage when the spillage probability was low, but less than the observed probability when the spillage probability was high. Increasing the duration of vibration increased the probability of spillage, and also increased the volume of liquid spilt.  相似文献   

9.
《Ergonomics》2012,55(4):245-255
When subjects are exposed to whole-body vibration, extra effort is required to maintain pre-vibration standards of performance. Therefore the willingness of subjects to expend this effort might influence both performance and physiological cost. Willingness may be related to a personality variable-score on the locus of control scale. This hypothesis was tested in 12 subjects who performed a simulated driving task during 10 min of vertical (±Gz) whole-body vibration at energy levels of 021,0-28 and 0-35 r.m.s.g using a sinusoidal and a random waveform. Accuracy at a foot-controlled, compensatory tracking task, reaction time, oxygen uptake and heart rate were measured. Subjects with an ‘internal’ locus of control had less tracking error(p<0.001)and higher heart rates (p<0.05) than did subjects with an ‘external’ locus of control. Furthermore, both variables were significantly correlated with the locus of control scores (r= +0.73 and —0.66) respectively. These findings suggest that the inter-subject differences found in investigations using human subjects may be explained in part by personality differences related to locus of control.  相似文献   

10.
Gerard MJ  Martin BJ 《Ergonomics》1999,42(2):314-326
Movement precision and performance time were evaluated through a visuo-manual tracking task performed before and after 10-min hand vibration exposure. Constant displacement amplitude vibration of 0.2 and 0.3 mm peak to peak at 90, 150, 300 Hz were applied to the hand z-axis by a vertical handle. During exposure a grip force of 5% MVC was exerted for 5 s and then relaxed for 25 s while maintaining fingers-handle contact. The tracking task consisted in moving a ring (phi = 9 mm) attached to a thin rod held between the index finger and thumb along a zig-zagged wire (phi = 3.7 mm). Alterations of tracking errors (ring-wire contact) and tracking time were analysed as a function of the vibration parameters. The tasks were performed by ten healthy participants. Vibration induced a significant increase in tracking errors (ring-wire contact) and a significant decrease in tracking time. These impairments decayed with time after vibration exposure. The recovery period was > 5 min but < 10 min with the exception of 90 Hz vibration, for which recovery could be > 10 min. The number of tracking errors was neither influenced by vibration frequency nor by amplitude. The tracking time decreased as frequency increased and recovery was related to the displacement amplitude. The subjective rating of the performance on a visual analogue scale indicated that the subjects tended to perceive the task as being easier after vibration exposure. Vibration applied to the non-dominant hand while the participant performed the tracking task had no effect. These results show that vibration similar to hand-tool vibration affects precision and velocity control of visually guided hand movements. Furthermore, these performance decrements were not consciously perceived.  相似文献   

11.
《Ergonomics》2012,55(7):1431-1444
Abstract

An experiment is described in which eight subjects performed three simple tasks (A, B and C) in static conditions and during exposure to whole-body vertical (z-axis) vibration at 0-5 and 40 Hz, at an acceleration magnitude of 2-1 ms-2 r.m.s. All subjects performed all conditions with and without an arm support. The objective was to explore the mechanisms that may cause disruption of manual control performance during vibration exposure. With task A subjects simply held a control with no visual feedback of activity at the control. With task B, subjects used the control to hold a controlled element stationary on a display. Task C was the same as task B, except that subjects had improved visual feedback of movement of the controlled element. Results showed that both 0-5 and 40 Hz vibration caused significant increases in control activity at frequencies of up to about 1 Hz compared with the condition without vibration. With visual feedback in task C, subjects were able to detect drifting of the controlled element on the display and introduced compensatory control activity at frequencies above about 0 2 Hz. The arm support reduced the magnitude of vibration transmitted to the control at 4-0 Hz, but did not otherwise change the results.  相似文献   

12.
There is little knowledge on performance during vibration exposure combined with occupational hazards such as bent or twisted postures. In addition, little information is available on the effective use of armrests during performance-related tasks. This paper investigates the influence of sitting in different working postures on the reaction time and perceived workload of subjects exposed to whole-body vibration. Twenty-one subjects were exposed to 1–20 Hz random vibration in the vertical and fore-and-aft directions. A choice reaction time task was completed while seated in four posture conditions: upright or twisted, with and without armrests. Following the task, participants completed the NASA TLX workload assessment. Posture combined with whole-body vibration exposure had a significant influence on the ability to perform the task. The combined environmental stressors significantly degraded the performance; not only did their reaction times become compromised, the participants’ workload demand also increased. The most severe decrement in performance and workload was experienced while seated in a twisted posture with no armrest support. The inclusion of armrests significantly improved the participants’ ability to complete the task with a lower workload demand.

Relevance to industry

Twisted postures have been observed in a variety of machine operations and it is important to determine their influence on operator workload. Many off-road machines have suspension seats fitted with armrests; this paper demonstrates that armrest support provides additional benefits for off-road machine operators under combined environmental stressors.  相似文献   


13.
《Ergonomics》2012,55(4):613-626
Two experiments have examined the effects of whole-body vibration on visual performance. The first experiment concerned alphanumeric reading performance and contrast thresholds for gratings subtending 7-5, 10 and 12-5 cycles per degree (c deg)?1. Seated subjects were exposed to vertical sinusoidal whole-body vibration (4 Hz, 2-5 ms?2 r.m.s.). Greatest reading errors occurred with characters exhibiting a high spatial complexity in their vertical axis. Reductions in contrast sensitivity due to vibration increased with increasing spatial frequency, the greatest loss occurring with horizontally orientated gratings.

In the second experiment, contrast thresholds for horizontally orientated gratings subtending 1-5 and 12-5cdeg?1 were obtained from ten subjects at five-minute intervals during a 60-minute whole-body vibration exposure (20 Hz I -7 m s ?2 r.m.s.), a 20-minute pre-exposure and a 60-minute post-exposure period. There were no significant changes in contrast thresholds for gratings subtending 1-5cdegminus;1 during or after vibration exposure. A large variation was found in the effect of vibration upon performance with the higher spatial frequency grating both during and after vibration exposure. Significant correlations between vertical head motion and contrast sensitivity were obtained with five of the ten subjects, suggesting that time-dependent changes in seat-to-head transmissibility were partly responsible for the results. Other time-dependent changes were found with the high spatial frequency grating. Possible explanations are discussed.  相似文献   

14.
《Ergonomics》2012,55(3):191-211
The experiment was aimed at investigating human response to different doses of whole-body vibration (WBV), at checking adaptation to repeated exposures, at further evaluating the frequency weighting, and at examining the effect of a distinct interruption of prolonged exposure. Eight male seated subjects were exposed for 3 h to sinusoidal WBV in the z-axis with the frequencies 4 Hz and 8 Hz, at a constant acceleration level of 1·0ms-2 rms,each frequency being repeated 4 times on consecutive days. Transmissibility, impedance, bioelectrical activity of trunk muscles, postural sway, performance in vigilance tasks, and the subjectively assessed psychological state, efforts, and stress experienced in performing the tasks were investigated. The transmissibility decreased during exposure time at 4 Hz and increased at 8 Hz when a controlled posture was maintained. The power-spectral density distribution and amplitude of postural sway were affected by WBV, depending on both duration and frequency. Performance data and rating data exhibited decrements and adverse effects, being greater beyond the ‘fatigue-decreased proficiency’ boundary (FDPB); adaptation and habituation were more pronounced at the FDPB dose. Generally, there were no cumulative effects. A pause for 20min did not essentially affect the reactions investigated.  相似文献   

15.
《Ergonomics》2012,55(8):705-719
The effects on discomfort of the frequency and direction of the translational vibration of a footrest and flat firm backrest have been studied in two experiments. At frequencies in the range 2.5-63 Hz, the first experiment determined the levels of fore-and-aft, lateral and vertical vibration of the feet of seated subjects which caused them discomfort equivalent to that from 0.8 m/s2 r.m.s. 10 Hz vertical vibration of a firm flat seat. The levels of fore-and-aft, lateral and vertical vibration at the back of a seat which were equivalent to 0.8 m/s2 r.m.s. 10 Hz vertical seat vibration were determined in the second experiment. The vibration of the feet or back occurred without simultaneous vibration at the seat.

Individual and group equivalent comfort contours are presented. It is concluded that the data provide a useful initial indication of the relative contribution of foot and back vibration to discomfort. Equivalent comfort contours for foot vibration were similar for all three directions of vibration. The contours for vibration of the back show a high sensitivity to fore-and-aft vibration. The results obtained from two additional studies show that vibration from a backrest and other variations in seating conditions can influence subject comfort.  相似文献   

16.
《Ergonomics》2012,55(7):623-634
The effects of ship motion on a range of typical manual control skills were examined on the Warren Spring ship motion simulator driven in heave, pitch and roll by signals taken from the frigate H MS Avenger at 13m/s(25 knots) into a force 4 wind. The motion produced a vertical r.m.s. acceleration of 0024g, mostly between 01 and 0-3 Hz, with comparatively little pitch or roll. A task involving unsupported arm movements was seriously affected by the motion; a pursuit tracking task showed a reliable decrement although it was still performed reasonably well (pressure and free-moving tracking controls were affected equally by the motion); a digit keying task requiring ballistic hand movements was unaffected. There was no evidence that these effects were caused by sea-sickness.

The differing response to motion of the different tasks, from virtual destruction to no effect, suggests that a major benefit could come from an attempt to design the man/control interface on board ship around motion resistant tasks.  相似文献   

17.
《Ergonomics》2012,55(7):631-650
This second paper in a series of studies of the discomfort produced by multi-axis vibration is concerned with rotational seat vibration. The effects of level, frequency and direction of the roll, pitch and yaw vibration of a firm flat seat have been studied in two experiments. At octave centre frequencies in the range 1-31.5 Hz the first experiment determined the levels of roll, pitch and yaw seat vibration which caused discomfort equivalent to 0-5 and l.25m/s2r.m.s. 10 Hz vertical seat vibration. In the second experiment, comfort contours equivalent to 0.8 m/s2 r.m.s. 10 Hz vertical seat vibration were determined from 18 males and 18 females at preferred third-octave centre frequencies from 1 to 31.5 Hz. In all cases the axis of rotation passed through the centre of the seat surface. There was no vibration of the feet and no backrest.

It was concluded that the shape of equivalent comfort contours need not normally depend on vibration, level. Both individual and group equivalent comfort contours are presented. Although there were significant correlations between subject size and subject relative discomfort it is not thought that these correlations have much practical application. In all three axes the median contours of vibration acceleration increase in proportion to vibration frequency. Sensitivity is greatest for roll vibration and least for yaw vibration of the seat.  相似文献   

18.
《Ergonomics》2012,55(7):823-835
This report describes a study on the effects of low frequency vibration on pilot performance. Army pilots acted as subjects and flew simulated helicopter missions in a realistic fixed base simulator environment. While flying the two-hour missions pilots were exposed to vibration stimuli varying in frequency from 6 to 12 Hz and in amplitude from ±0·1 to ±0·3g (measured at the floor). Measurements were taken of the vibration tramsmissibility of the pilot's seat so that the vibration actually felt by the subject could be determined.

Missions involved transporting external loads in a simulated logistics environment. Performance was evaluated by measuring flight path deviations from prescribed en route, approach, and hover parameters.

The vibration stimuli used did not degrade performance. In fact, performance tended to improve with increased stress. It is hypothesized that this trend was due to motivation, i.e. as subjects felt the onset of fatigue they compensated by working harder and thus tended to improve their performance.

On about 6% of their scores pilots exhibited sudden lapses in their ability to respond to display indications. This resulted in poor scores in the midst of otherwise normal data. These lapses are probably of very short duration (seconds in length) and seem to occur randomly. This same effect was also observed in a previous study by the author. It may be possible that lapses of this type are related to so called ‘pilot error’ accidents. Further research is needed to verify this.  相似文献   

19.
《Ergonomics》2012,55(11):1800-1812
This experimental study investigated the perception of fore-and-aft whole-body vibration intensity using cross-modality matching (CM) and magnitude estimation (ME) methods. Thirteen subjects were seated on a rigid seat without a backrest and exposed to sinusoidal stimuli from 0.8 to 12.5 Hz and 0.4 to 1.6 ms? 2 r.m.s. The Stevens exponents did not significantly depend on vibration frequency or the measurement method. The ME frequency weightings depended significantly on vibration frequency, but the CM weightings did not. Using the CM and ME weightings would result in higher weighted exposures than those calculated using the ISO (2631-1, 1997) Wd. Compared with ISO Wk, the CM and ME-weighted exposures would be greater at 1.6 Hz and lesser above that frequency. The CM and ME frequency weightings based on the median ratings for the reference vibration condition did not differ significantly. The lack of a method effect for weightings and for Stevens exponents suggests that the findings from the two methods are comparable.  相似文献   

20.
《Ergonomics》2012,55(8):977-983
Fifteen subjects performed a numeral reading task during (a) vibration of the display, (b) vibration of the subject, (c) simultaneous vibration of both subject and display. Sinusoidal motion at eleven frequencies (0·5 to 5·0 Hz) was presented at five acceleration magnitudes (1·0 to 2·5ms?2 r.m.s.). Measures of reading time and reading error showed that for all except the highest frequencies, vibration of the display resulted in the poorest performance. Simultaneous whole-body-and-display vibration produced least performance decrement. The effects of both the viewing conditions and the vibration frequency are discussed in relation to known characteristics of the visual system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号