首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Augmented reality allows changes to be made to the visual perception of object size even while the tangible components remain completely unaltered. It was, therefore, utilized in a study whose results are being reported here to provide the proper environment required to thoroughly observe the exact effect that visual change to object size had on programming fingertip forces when objects were lifted with a precision grip. Twenty-one participants performed repeated lifts of an identical grip apparatus to a height of 20 mm, maintained each lift for 8 seconds, and then replaced the grip apparatus on the table. While all other factors of the grip apparatus remained unchanged, visual appearance was altered graphically in a 3-D augmented environment. The grip apparatus measured grip and load forces independently. Grip and load forces demonstrated significant rates of increase as well as peak forces as the size of graphical images increased; an aspect that occurred in spite of the fact that extraneous haptic information remained constant throughout the trials. By indicating a human tendency to rely - even unconsciously - on visual input to program the forces in the initial lifting phase, this finding provides further confirmation of previous research findings obtained in the physical environment; including the possibility of extraneous haptic effects (Gordon et al. 1991a, Mon-Williams and Murray 2000, Kawai et al. 2000). The present results also suggest that existing knowledge concerning human manipulation tasks in the physical world may be applied to an augmented environment where the physical objects are enhanced by computer generated visual components.  相似文献   

2.
Virtual Reality (VR) appears a natural medium for three-dimensional computer supported collaborative work (CSCW). However the current trend in CSCW is to adapt the computer interface to work with the user's traditional tools, rather than separating the user from the real world as does immersive VR. One solution is through Augmented Reality, the overlaying of virtual objects on the real world. In this paper we describe the Shared Space concept—the application of Augmented Reality for three-dimensional CSCW. This combines the advantages of Virtual Reality with current CSCW approaches. We describe a collaborative experiment based on this concept and present preliminary results which show that this approach may be better for some applications.  相似文献   

3.
Using an immersive virtual environment, this study investigated whether the inclusion of force feedback or auditory cues improved manipulation performance and subjective reports of usability for an assembly task. Twenty-four volunteers (12 males and 12 females) were required to assemble and then disassemble five interconnecting virtual parts with either auditory, force, or no feedback cues provided. Performance for the assembly task was measured using completion time and number of collisions between parts, while the users preferences across conditions were evaluated using subjective reports of usability. The results indicated that the addition of force feedback slowed completion time and led to more collisions between parts for males. In contrast, females exhibited no change in the mean completion time for the assembly task but did show an increase in collision counts. Despite these negative performance findings when adding force feedback, users did report perceived increases in realism, helpfulness and utility towards the assembly task when force feedback was provided. Unlike force feedback, the results showed that auditory feedback, indicating that parts had collided during the assembly task, had no negative performance effects on the objective measures while still increasing perceived realism and overall user satisfaction. When auditory cues and force feedback were presented together, performance times, number of collisions, and usability were not improved compared to conditions containing just auditory cues or force feedback alone. Based on these results, and given the task and display devices used in the present study, the less costly option of excluding auditory and force feedback cues would produce the best performance when measured by the number of collisions and completion time. However, if increased ratings of usability for an assembly task are desired while maintaining objective performance levels and reduced cost, then the inclusion of auditory feedback cues is best.  相似文献   

4.
This paper presents robust force tracking control of a flexible beam during a grasping operation using a piezoceramic actuator. Equations describing the motion of the gripper in conditions of contact and noncontact are derived based on the cantilever beam. In this study, contact force is regulated, in addition to the impact force generated at the instant of contact, based on variable structure model reference adaptive control theory using only force measurements. For the derivation of the control law, it is assumed that parameters of the beam and the stiffness of the object are unknown. Computer simulations show the effectiveness the controller. This work was presented, in part, at the Fourth International Symposium on Artificial Life and Robotics, Oita, Japan, January 19–22, 1999  相似文献   

5.
《Ergonomics》2012,55(6):425-440
The current study investigated inter-digit co-ordination and object-digit interaction during sustained object holding tasks by using five, six-component force/torque sensors. The sum of the individual finger normal forces and the thumb normal force showed a parallel variation with a mean median correlation coefficient of 0.941. The normal force traces demonstrated the lowest coefficient of variation (about 9% as averaged across digits) as compared with other force/torque traces. The sum for the variances of the normal forces of the index, middle, ring, and little fingers was about 50% of the variance of the summed normal force of the four fingers. Of the five digits, the thumb, index, middle, ring and little fingers accounted for 50.0, 15.4, 14.6, 11.7 and 7.3% of the total normal force; and 39.4, 9.9, 19.3, 14.0 and 17.5% of the total vertical shear force (i.e. the load), respectively. The ratios of the normal force to the resultant shear force were 2.6, 4.5, 1.8, 2.2 and 1.3 for the thumb, index, middle, ring and little finger, respectively. The centre of pressure migration area of a single digit at the object-digit surface during object holding ranged from 0.30 to 1.21 mm2. The current study reveals a number of detailed object-digit mechanics and multiple digits co-ordination principle. The results of this study may help to improve ergonomic designs that involve the usage of multiple digits.  相似文献   

6.
Research into human factors issues associated with the use of augmented reality (AR) technology is very limited. Consequently, there is a need for formal human factors design guidelines to underpin the integration of AR into systems. The Defence Evaluation and Research Agency (DERA) Centre for Human Sciences (CHS) is evaluating the potential of AR for providing real-time training feedback in future advanced embedded training systems for the military. In order to understand the important human factors issues of augmented reality, DERA funded the Advanced VR Research Centre (AVRRC) at Loughborough University to investigate the cognitive ergonomics of this technology. An important aspect of this research is concerned with identifying any human information processing issues that may arise when information is presented via AR and overlaid upon one or more primary display surfaces such as a visual display unit (VDU). Two main issues are addressed in this research. First, the impact of AR on human information processing and second, subjective workload experienced when displaying information via the AR medium. The experiments reported in this paper assess issues of reaccommodation and reaction times to alarms on different display formats. They demonstrate also that AR performs as well as standard display formats.  相似文献   

7.
This paper demonstrates a haptic device for interaction with a virtual environment. The force control is added by visual feedback that makes the system more responsive and accurate. There are two popular control methods widely used in haptic controller design. First, is impedance control when user motion input is measured, and then, the reaction force is fed back to the operator. The alternative method is admittance control, when forces exerted by user are measured and motion is fed back to the user. Both, impedance and admittance control are also basic ways for interacting with a virtual environment. In this paper, several experiments were performed to evaluate the suitability of force-impedance control for haptic interface development. The difference between conventional application of impedance control in robot motion control and its application in haptic interface development is investigated. Open loop impedance control methodology is implemented for static case and a general-purpose robot under open loop impedance control was developed as a haptic device, while a closed loop model based impedance control was used for haptic controller design in both static and dynamic case. The factors that could affect to the performance of a haptic interface are also investigated experimentally using parametric studies. Experimental results for 1 DOF rotational motion and 2 DOF planar translational motion systems are presented. The results show that the impedance control aided by visual feedback broaden the applicability of the haptic device and makes the system more responsive and accurate.
J. SasiadekEmail:
  相似文献   

8.

Adaptive Hypermedia has sought to tackle the problems of dealing with complex, heavily structured information and the presentation of views of that structure to users. Increasingly, adaptive content is achieved through different forms of context. Using two case-study applications, we will reflect on how Augmented Reality may present solutions to a number of Adaptive Hypermedia presentation problems. Each case study describes a different physical interaction metaphor for exposing the complex adaptation of hypermedia content in an intuitive way. The preliminary findings of our early evaluations are discussed. Finally, conclusions are drawn as to how Augmented Reality applications could use the modelling techniques of the Adaptive Hypermedia community to deal more easily with complex information.  相似文献   

9.
In this paper, we present a novel approach for a nonlinear feedback control which is called an augmented automatic choosing control (AACC) of the antiwindup type for nonlinear systems with constrained inputs. Constant terms which arise from section-wise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by the genetic algorithm so as to minimize a performance made of the Hamiltonian and the absolute antiwindup measure. This approach is applied to a field excitation control problem of a power system to demonstrate the superiority of the AACC. Simulation results show that the new controller can improve performance remarkably well. This work was presented in part at the 12th International Symposium on Artificial Life and Robotics, Oita, Japan, January 25–27, 2007  相似文献   

10.
An analytical MPC controller was designed for force control of a single-rod electrohydraulic actuator. The controller based on a difference equation uses short control horizon. The constraints on both input and output variables are taken into consideration by the controller. The mechanism of output constraints satisfaction uses output prediction and makes possible to constrain the output values many sampling instants ahead. Thus, it extends capabilities of the analytical MPC controllers to the field reserved so far for much more computationally expensive numerical MPC algorithms. Results of real life experiments illustrate efficiency of the proposed controller. The results also show that the MPC controller has better tracking performance than conventional P and PI controllers. The MPC controller with the constraint handling mechanisms, though relatively simple, offers very good performance. As the design process is detailed, it is possible to relatively easy adapt the proposed approach to other control plants.  相似文献   

11.
12.
A position/force hybrid control system based on impedance control scheme is designed to align a small gripper to a special ring object. The vision information provided by microscope vision system is used as the feedback to indicate the position relationship between the gripper and the ring object. Multiple image features of the gripper and the ring object are extracted to estimate the relative positions between them. The end-effector of the gripper is tracked using the extracted features to keep the gripper moving in the field of view. The force information from the force sensor serves as the feedback to ensure that the contact force between the gripper and the ring object is limited in a small safe range. Experimental results verify the effectiveness of the proposed control strategy.  相似文献   

13.
14.
Exoskeleton robots and their control methods have been extensively developed to aid post-stroke rehabilitation. Most of the existing methods using linear controllers are designed for position control and are not suitable for human-machine interaction (HMI) force control, as the interaction system between the human body and exoskeleton is uncertain and nonlinear. We present an approach for HMI force control via model reference adaptive impedance control (MRAIC) to solve this problem in case of index finger exoskeleton control. First, a dynamic HMI model, which is based on a position control inner loop, is for- mulated. Second, the theoretical MRAC framework is implemented in the control system. Then, the adaptive controllers are designed according to the Lyapunov stability theory. To verify the performance of the proposed method, we compare it with a proportional-integral-derivative (PID) method in the time domain with real experiments and in the frequency domain with simu- lations. The results illustrate the effectiveness and robustness of the proposed method in solving the nonlinear HMI force control problem in hand exoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号