首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat stress can be a significant problem for pilots wearing protective clothing during flights, because they provide extra insulation which prevents evaporative heat loss. Heat stress can influence human cognitive activity, which might be critical in the flying situation, requiring efficient and error-free performance. This study investigated the effect of wearing protective clothing under various ambient conditions on physiological and cognitive performance. On several occasions, eight subjects were exposed for 3 h to three different environmental conditions; 0 degrees C at 80% RH, 23 degrees C at 63% RH and 40 degrees C at 19% RH. The subjects were equipped with thermistors, dressed as they normally do for flights (including helmet, two layers of underwear and an uninsulated survival suit). During three separate exposures the subjects carried out two cognitive performance tests (Vigilance test and DG test). Performance was scored as correct, incorrect, missed reaction and reaction time. Skin temperature, deep body temperature, heart rate, oxygen consumption, temperature and humidity inside the clothing, sweat loss, subjective sensation of temperature and thermal comfort were measured. Rises in rectal temperature, skin temperature, heart rate and body water loss indicated a high level of heat stress in the 40 degrees C ambient temperature condition in comparison with 0 degrees C and 23 degrees C. Performance of the DG test was unaffected by ambient temperature. However, the number of incorrect reactions in the Vigilance test was significantly higher at 40 degrees C than at 23 degrees C (p = 0.006) or 0 degrees C (p = 0.03). The effect on Vigilance performance correlated with changes in deep-body temperature, and this is in accordance with earlier studies that have demonstrated that cognitive performance is virtually unaffected unless environmental conditions are sufficient to change deep body temperature.  相似文献   

2.
《Ergonomics》2012,55(8):780-799
Heat stress can be a significant problem for pilots wearing protective clothing during flights, because they provide extra insulation which prevents evaporative heat loss. Heat stress can influence human cognitive activity, which might be critical in the flying situation, requiring efficient and error-free performance. This study investigated the effect of wearing protective clothing under various ambient conditions on physiological and cognitive performance. On several occasions, eight subjects were exposed for 3 h to three different environmental conditions; 0°C at 80% RH, 23°C at 63% RH and 40°C at 19% RH. The subjects were equipped with thermistors, dressed as they normally do for flights (including helmet, two layers of underwear and an uninsulated survival suit). During three separate exposures the subjects carried out two cognitive performance tests (Vigilance test and DG test). Performance was scored as correct, incorrect, missed reaction and reaction time. Skin temperature, deep body temperature, heart rate, oxygen consumption, temperature and humidity inside the clothing, sweat loss, subjective sensation of temperature and thermal comfort were measured. Rises in rectal temperature, skin temperature, heart rate and body water loss indicated a high level of heat stress in the 40°C ambient temperature condition in comparison with 0°C and 23°C. Performance of the DG test was unaffected by ambient temperature. However, the number of incorrect reactions in the Vigilance test was significantly higher at 40°C than at 23°C (p = 0.006) or 0°C (p = 0.03). The effect on Vigilance performance correlated with changes in deep-body temperature, and this is in accordance with earlier studies that have demonstrated that cognitive performance is virtually unaffected unless environmental conditions are sufficient to change deep body temperature.  相似文献   

3.
Measurement of the clothing ventilation index   总被引:1,自引:0,他引:1  
In order to achieve thermal comfort while wearing protective clothing, heat loss from the body by convection and by the evaporation of sweat must be readily controlled by the wearer's thermoregulatory system. This can only be achieved if air is flowing through the clothing micro-environment in sufficient quantity to remove sensible and insensible heat as required. The volume flow of air through the clothing assembly is therefore an important determinant of thermal comfort.

This paper describes a new procedure for estimating under working conditions, the volume of air flowing through the micro-environment. The method is based on two techniques: the first gives a measure of the volume of the micro-environment; the other uses a trace gas to measure the rate of air exchange. Algebraic combination of the results enables the air exchange characteristics of a garment to be described in terms of a Ventilation Index. It is proposed that this index be used to describe the performance of protective clothing assemblies.  相似文献   


4.
The aim of this study was to investigate the physiological and psychological responses during and after high-intensity exercise in a warm and humid environment in subjects wearing shirts of different fabrics. Eight healthy men exercised on two separate occasions, in random order, wearing two types of long-sleeve T-shirt: one made of polyester (PES) and the other of cotton fabric (CT). They performed three 20 min exercise bouts, with 5 min rest between each, and then rested in a chair for 60 min to recover. The ambient temperature was 25 °C and relative humidity was 60%. The exercise comprised of treadmill running at 8 km/h at 1° grade. Rectal temperature, skin temperatures at eight sites, heart rate, T-shirt mass and ratings of thermal, clothing wettedness, and shivering/sweating sensation were measured before the experiment, during the 5 min rest period after each exercise bout, and during recovery. Nude body mass was measured before the experiment and during recovery. The physiological stress index showed that the exercise produced a state of very high heat stress. Compared with exercise wearing the CT shirt, exercise wearing the PES fabric produced a greater sweating efficiency and less clothing regain (i.e., less sweat retention), but thermophysiological and subjective sensations during the intermittent high-intensity exercise were similar for both fabrics. However, skin temperature returned to the pre-exercise level faster, and the thermal and rating of shivering/sweating sensation were lower after exercise in the warm and humid environment in subjects wearing PES than when wearing the more traditional CT fabric.  相似文献   

5.
The aim of this study was to compare the physiological and subjective strain in workers wearing a disposable “Tyvek” (TYV) and a ventilated “Mururoa” (MUR) coverall in a real working situation. Eleven men performing normal abatement tasks volunteered to participate. Physiological measurements included oral temperature, heart rate and sweat loss. Subjective evaluations of clothing comfort, cooling, robustness, cumbersomness, acceptable exposure duration and physical exertion were carried out at the end of the task. The ventilated MUR reduced heat strain. Indeed, it allowed significantly higher sweat loss than TYV and showed a tendency to reduce the increase in oral temperature. Subjective ratings reveal that MUR was considered better than TYV in terms of clothing comfort, coolness and robustness. On the other hand, MUR is more cumbersome to wear. In this study, where workload and heat stress were moderate, there were few differences between the two coveralls in terms of physiological strains, but far more significant differences in the subjective ratings.  相似文献   

6.
《Applied ergonomics》2011,42(1):46-51
The aim of this study was to investigate the physiological and psychological responses during and after high-intensity exercise in a warm and humid environment in subjects wearing shirts of different fabrics. Eight healthy men exercised on two separate occasions, in random order, wearing two types of long-sleeve T-shirt: one made of polyester (PES) and the other of cotton fabric (CT). They performed three 20 min exercise bouts, with 5 min rest between each, and then rested in a chair for 60 min to recover. The ambient temperature was 25 °C and relative humidity was 60%. The exercise comprised of treadmill running at 8 km/h at 1° grade. Rectal temperature, skin temperatures at eight sites, heart rate, T-shirt mass and ratings of thermal, clothing wettedness, and shivering/sweating sensation were measured before the experiment, during the 5 min rest period after each exercise bout, and during recovery. Nude body mass was measured before the experiment and during recovery. The physiological stress index showed that the exercise produced a state of very high heat stress. Compared with exercise wearing the CT shirt, exercise wearing the PES fabric produced a greater sweating efficiency and less clothing regain (i.e., less sweat retention), but thermophysiological and subjective sensations during the intermittent high-intensity exercise were similar for both fabrics. However, skin temperature returned to the pre-exercise level faster, and the thermal and rating of shivering/sweating sensation were lower after exercise in the warm and humid environment in subjects wearing PES than when wearing the more traditional CT fabric.  相似文献   

7.
When a work scenario in protective clothing is a nominal two hours of work followed by a short break, the level of heat stress must be limited to conditions of thermal equilibrium. By comparing changes in maximum sustainable work rate in a fixed environment, differences due to different protective clothing ensembles can be determined. To illustrate this principle, two protective clothing ensembles were examined. The Basic Ensemble was a cotton blend coverall over gym shorts with hard hat, gloves and full face mask respirator. The Enhanced Ensemble added a light weight, surgical scrub suit under the coveralls, plus a hood worn under the hard hat. Five young, acclimated males were the test subjects. Environmental conditions were fixed at Tdb=32°C and Tpwb=26°C. After a physiological steady state was established at a low rate of work, treadmill speed was increased by 0.04 m/s every 5 min. The trial continued until thermal equilibrium was clearly lost. A critical treadmill speed was noted at the point thermal equilibrium was lost for each ensemble and subject. The drop in treadmill speed from the basic to enhanced ensemble was 11%. Based on measured values of average skin temperature and metabolic rate at the critical work rate and estimated values of clothing insulation, the average evaporative resistances for the basic and enhanced ensembles were 0.018 and 0.026 kPa m2/W, respectively.

Relevance to industry

Protective clothing decisions are based on the need to reduce the risk of skin contact with chemical or physical hazards. Sometimes over-protection of the skin results in a hazard secondary to the skin, such as heat stress. With or without over-protection, protective clothing decisions may affect the level of heat stress and result in lower rates of sustainable work. This paper illustrates the affects of a relatively small change in protective clothing requirements on the ability to work in the heat.  相似文献   


8.
《Ergonomics》2012,55(1):80-98
Fire fighter breathing apparatus instructors (BAIs) must possess the ability to respond to both the extrinsic stress of a high temperature environment and the intrinsic stress from wearing personal protective equipment (PPE) and self-contained breathing apparatus (SCBA), repeatedly and regularly, whilst training recruits in live fire training exercises (LFTEs). There are few previous investigations on BAIs in hot environments such as LFTEs, since the main research focus has been on regular fire fighters undertaking exercises in temperate or fire conditions at a moderate to high exercise intensity. In this study, the intrinsic cardiovascular stress effects of wearing PPE + SCBA were first investigated using a step test whilst wearing gym kit (control), weighted gym kit (a rucksack weighted to the equivalent of PPE + SCBA) and full PPE + SCBA (weight plus the effects of protective clothing). The extrinsic effects of the very hot environment were investigated in BIAs in LFTEs compared to mock fire training exercises (MFTEs), where the fire was not ignited. There was an increase in heart rate due to the modest workload imposed on the BAIs through carrying out the MFTEs (25.0 (18.7)%) compared to resting. However, when exposed to fire during the LFTEs, heat storage appears to be significant as the heart rate increased by up to 39.8 (±20.1)% over that of the mock LFTEs at temperate conditions. Thus, being able to dissipate heat from the PPE is particularly important in reducing the cardiovascular responses for BAIs during LFTEs.  相似文献   

9.
It was the purpose of this study to examine whether replacing long pants (P) with shorts (S) would reduce the heat stress of wearing firefighting protective clothing during exercise in a warm environment. Twenty-four Toronto Firefighters were allocated to one of four groups that performed heavy (H, 4.8 km x h(-1), 5% grade), moderate (M, 4.5 km x h(-1), 2.5% grade), light (L, 4.5 km x h(-1)) or very light (VL, 2.5 km x h(-1)) exercise while wearing their full protective ensemble and self-contained breathing apparatus. Participants performed a familiarization trial followed by two experimental trials at 35 degrees C and 50% relative humidity wearing either P or S under their protective overpants. Replacing P with S had no impact on the rectal temperature (Tre) or heart rate response during heavy or moderate exercise where exposure times were less than 1 h (40.8 +/- 5.8 and 53.5 +/- 9.2 min for H and M, respectively while wearing P, and 43.5 +/- 5.3 and 54.2 +/- 8.4 min, respectively while wearing S). In contrast, as exposure times were extended during lighter exercise Tre was reduced by as much as 0.4 degrees C after 80 min of exercise while wearing S. Exposure times were significantly increased from 65.8 +/- 9.6 and 83.5 +/- 11.6 min during L and VL, respectively while wearing P to 73.3 +/- 8.4 and 97.0 +/- 12.5 min, respectively while wearing S. It was concluded that replacing P with S under the firefighting protective clothing reduced the heat stress associated with wearing the protective ensemble and extended exposure times approximately 10 - 15% during light exercise. However, during heavier exercise where exposure times were less than 1 h replacing P with S was of little benefit.  相似文献   

10.
S K Chang  R R Gonzalez 《Ergonomics》1999,42(8):1038-1050
Heat acclimation-induced sweating responses have the potential of reducing heat strain for chemical protective garment wearers. However, this potential benefit is strongly affected by the properties of the garment. If the clothing ensemble permits sufficient evaporative heat dissipation, then heat acclimation becomes helpful in reducing heat strain. On the other hand, if the garment creates an impenetrable barrier to moisture, no benefit can be gained from heat acclimation as the additional sweating cannot be evaporated. Ten subjects were studied exercising on a treadmill while wearing two different chemical protective ensembles. Skin heat flux, skin temperature, core temperature, metabolic heat production and heart rate were measured. It was found that the benefit of heat acclimation is strongly dependent on the ability of the body to dissipate an adequate amount of heat evaporatively. The evaporative potential (EP), a measure of thermal insulation modified by moisture permeability, of the clothing ensemble offers a quantitative index useful to determine, a priori, whether heat acclimation would be helpful when wearing protective clothing system. The data show that when EP is < 15%, heat acclimation affords no benefit. An evaporative potential graph is created to aid in this determination.  相似文献   

11.
《Ergonomics》2012,55(1):75-80
It was the purpose of this study to examine whether replacing long pants (P) with shorts (S) would reduce the heat stress of wearing firefighting protective clothing during exercise in a warm environment. Twenty-four Toronto Firefighters were allocated to one of four groups that performed heavy (H, 4.8?km·h?1, 5% grade), moderate (M, 4.5?km·h?1, 2.5% grade), light (L, 4.5?km·h?1) or very light (VL, 2.5?km·h?1) exercise while wearing their full protective ensemble and self-contained breathing apparatus. Participants performed a familiarization trial followed by two experimental trials at 35°C and 50% relative humidity wearing either P or S under their protective overpants. Replacing P with S had no impact on the rectal temperature (Tre) or heart rate response during heavy or moderate exercise where exposure times were less than 1?h (40.8?±?5.8 and 53.5?±?9.2?min for H and M, respectively while wearing P, and 43.5?±?5.3 and 54.2?±?8.4?min, respectively while wearing S). In contrast, as exposure times were extended during lighter exercise Tre was reduced by as much as 0.4°C after 80?min of exercise while wearing S. Exposure times were significantly increased from 65.8?±?9.6 and 83.5?±?11.6?min during?L and VL, respectively while wearing P to 73.3?±?8.4 and 97.0?±?12.5?min, respectively while wearing S. It was concluded that replacing P with S under the firefighting protective clothing reduced the heat stress associated with wearing the protective ensemble and extended exposure times approximately 10?–?15% during light exercise. However, during heavier exercise where exposure times were less than 1?h replacing P with S was of little benefit.  相似文献   

12.
Fire fighter breathing apparatus instructors (BAIs) must possess the ability to respond to both the extrinsic stress of a high temperature environment and the intrinsic stress from wearing personal protective equipment (PPE) and self-contained breathing apparatus (SCBA), repeatedly and regularly, whilst training recruits in live fire training exercises (LFTEs). There are few previous investigations on BAIs in hot environments such as LFTEs, since the main research focus has been on regular fire fighters undertaking exercises in temperate or fire conditions at a moderate to high exercise intensity. In this study, the intrinsic cardiovascular stress effects of wearing PPE + SCBA were first investigated using a step test whilst wearing gym kit (control), weighted gym kit (a rucksack weighted to the equivalent of PPE + SCBA) and full PPE + SCBA (weight plus the effects of protective clothing). The extrinsic effects of the very hot environment were investigated in BIAs in LFTEs compared to mock fire training exercises (MFTEs), where the fire was not ignited. There was an increase in heart rate due to the modest workload imposed on the BAIs through carrying out the MFTEs (25.0 (18.7)%) compared to resting. However, when exposed to fire during the LFTEs, heat storage appears to be significant as the heart rate increased by up to 39.8 (+/-20.1)% over that of the mock LFTEs at temperate conditions. Thus, being able to dissipate heat from the PPE is particularly important in reducing the cardiovascular responses for BAIs during LFTEs.  相似文献   

13.
《Ergonomics》2012,55(10):1241-1250
Abstract

The purpose of this study is to investigate workers' responses to work in hot-humid conditions while wearing protective clothing commonly used by the asbestos removal industry, and to evaluate the effects of resting between work bouts in a cool environment on the physiological strain. Seven male students wearing impermeable protective clothing and air masks were exposed to the following conditions for 100 min on separate days: (1) hot conditions (35°C/85%RH), (2) cool conditions (20°C/85%RH), and (3) hot/cool conditions (working in hot conditions and resting in cool conditions). After 12 min rest, the subjects worked on an ergometer (70 Watts) for 18 min. This experimental schedule was repeated three times under each environmental condition. Rectal temperature (Tπ), heart rate (HR), sweat rate (SR) and discomfort sensation were recorded. Two of the subjects were not able to complete the experiment in hot conditions. The increases in Tπ and HR with time were not found in cool conditions. Although Tπ increased in hot/cool conditions, it was almost half of that in hot conditions. Since HR did not return to the pre-work level during recovery in hot conditions, HR during work was accompanied by increases in HR at pre-work. HR during work in hot/cool conditions was higher than that in cool conditions, HR at pre-work, however, was almost the same as that in cool conditions because of rapid recovery. The means of SR in hot and hot/cool conditions were five and four times greater than that in cool conditions, respectively. Discomfort sensation was improved by resting in cool conditions either at rest in cool conditions or during work in hot conditions. The rate of body heat storage that was calculated at the end of each work and recovery period showed that it was positive even in recovery under the hot conditions. It also presented a significant negative phase in recovery under the hot/cool conditions. Thermal stress was linked to work in protective clothing in hot-humid environments. However, the physiological strains were dramatically ameliorated by resting between work periods in a cool environment. The idea of a ‘cool room’ inside the workplace, so to reduce thermal stress, is proposed.  相似文献   

14.
《Ergonomics》2012,55(15):1657-1668
Many fabrics and clothing ‘systems’ have been designed to enhance heat balance and provide greater thermal comfort for the wearer. However, studies on the effects of socks have largely been ignored in clothing research. It has been suggested that the thermal state of the extremities may alter core temperature and mental stress may be a major determinant of skin blood perfusion on the foot. However, no definite conclusions have been drawn. The aim of this study was to examine the effects of two different sock types on foot skin temperature and to investigate any impact on whole body thermoregulation and energy expenditure. Sixteen subjects carried out two sessions of treadmill running exercise, one session wearing a standard running sock and one session wearing an ergonomic asymmetric fitted sock. The overall mean heart rate, core (aural) temperature, foot skin temperature, weighted mean skin temperature and sweat rate during exercise were not statistically significant between the sock conditions (p?&gt;?0.05). There was a consistent trend in all participants for the ergonomic sock to induce a higher core temperature and higher skin temperatures compared to the standard sock. Overall mean ratings of perceived exertion and ratings of thermal perception were similar for both sock conditions. Participant questionnaires highlighted a general perception that the ergonomic socks had superior cushioning but that the standard socks were comfortable to wear. Despite there being no significant physiological or thermal differences between socks, the ergonomic sock was perceived to be cooler and was the preferred sock which suggests that subjective perceptions may be more important than objective measurements when selecting a sock for wear during prolonged exercise.  相似文献   

15.
Purvis AJ  Tunstall H 《Ergonomics》2004,47(15):1657-1668
Many fabrics and clothing 'systems' have been designed to enhance heat balance and provide greater thermal comfort for the wearer. However, studies on the effects of socks have largely been ignored in clothing research. It has been suggested that the thermal state of the extremities may alter core temperature and mental stress may be a major determinant of skin blood perfusion on the foot. However, no definite conclusions have been drawn. The aim of this study was to examine the effects of two different sock types on foot skin temperature and to investigate any impact on whole body thermoregulation and energy expenditure. Sixteen subjects carried out two sessions of treadmill running exercise, one session wearing a standard running sock and one session wearing an ergonomic asymmetric fitted sock. The overall mean heart rate, core (aural) temperature, foot skin temperature, weighted mean skin temperature and sweat rate during exercise were not statistically significant between the sock conditions (p > 0.05). There was a consistent trend in all participants for the ergonomic sock to induce a higher core temperature and higher skin temperatures compared to the standard sock. Overall mean ratings of perceived exertion and ratings of thermal perception were similar for both sock conditions. Participant questionnaires highlighted a general perception that the ergonomic socks had superior cushioning but that the standard socks were comfortable to wear. Despite there being no significant physiological or thermal differences between socks, the ergonomic sock was perceived to be cooler and was the preferred sock which suggests that subjective perceptions may be more important than objective measurements when selecting a sock for wear during prolonged exercise.  相似文献   

16.
《Ergonomics》2012,55(11):1589-1593
The physical work performance of eight fit fire fighters wearing fire brigade uniforms and wearing breathing apparatus was assessed. They were tested in a climatic chamber set at temperatures of 15 and 45°C respectively. The test was performed with and without fire fighting equipment. The subjects walked on a treadmill at a speed of 3.5km/h, which produce a workload equivalent of 20% of the subjects' maximal oxygen uptake without equipment, and 30% with equipment. The test lasted for 60 min. Heart rate, oxygen uptake, skin and deep body temperatures were measured during the test. The subjects estimated perceived physical exertion and perceived temperature. Wearing fire fighting equipment increased the oxygen uptake by 0.4 1min-1. Heart rate at the end of the experiments reached near-maximum levels when the temperature was 45°C with equipment, and deep body temperature increased to an average of 38.7°C. The subjects' ratings of perceived exertion were highly correlated to heart rate. The loading induced by heat and protective equipment reduced the ability to perform strenuous work. The combination of thick clothing and heavy breathing apparatus was found to have a significant limiting effect on the endurance of fire fighters.  相似文献   

17.
《Ergonomics》2012,55(5):1057-1066
Abstract

The traditional use of core temperature to assess the thermal effects of clothing has recently been questioned. The purpose of this study was to assess the reproducibility of body temperature in five subjects (mean age, 226 ± 1-5 yrs) wearing either athletic clothing or a chemical protective overgarment while exercising at 20°C and at 40°C. The exercise was preceded by a 1 h adaptation period in a controlled environmental chamber. Results indicated that mean group change in rectal temperature (δTr ) appeared to be reproducible for both garment ensembles at 20°C but not at 40°C. For mean change in oesophageal temperature ( δToes ) at 20°C, reproducibility was obtained for the overgarment but not for the athletic garment; at 40°C, mean δToes appeared to be reproducible with both garments. However, when individual responses were examined, there was little reproducibility for either δTr or δToes . In addition, these measurements failed to show differences in the types of clothing worn. It was concluded that the use of core temperature to assess heat stress imposed by wearing clothing during exercise may lead to erroneous conclusions.  相似文献   

18.
《Ergonomics》2012,55(7):626-635
While a personal protective equipment (PPE) ensemble effectively provides workers with protection from occupational hazards, working in a vapour-resistant ensemble increases the risk of heat illness/injuries and physiological burdens. The purpose of this study was to investigate the effect of body cooling via a liquid-cooled garment (LCG) underneath a PPE ensemble on perceived thermal strain, physiological responses and ergonomics during an intermittent treadmill exercise in warm environmental conditions. The results of the present study indicated that the concomitant wearing of LCG underneath the PPE ensemble significantly reduced subjective perception of heat and alleviated overall increase in body temperature and heart rate while no impact of wearing LCG on ergonomic features was found. The extension of the present findings to practical applications in occupational settings requires further research on a LCG system design and performance evaluations while the LCG is incorporated within the PPE ensemble.

Statement of Relevance: Implementation of a LCG underneath PPE for body cooling was investigated, focusing on its impact on individuals' perceived thermal strain, physiological responses and ergonomics. The findings of the present study indicated that body cooling via a wearable LCG underneath PPE significantly alleviated both perceived thermal and physiological strain in uncompensable heat stress condition.  相似文献   

19.
《Ergonomics》2012,55(8):1048-1049
A common metric of assessing the evaporative cooling potential of protective clothing is to assess the rate of diffusion of water vapour through the fabric. Another mechanism that supports evaporative cooling is convective transfer. Prototype porous coveralls were constructed to promote convective air flow with 0.0024 mm (0.06 inch) holes representing nominal openings of 0, 1, 2, 5, 10 and 20% of the garment surface area (called P00, P01, P02, P05, P10 and P20). The purpose of this study was to evaluate the ability of these porous coverall configurations to support evaporative cooling. The assessment measures were critical wet bulb globe temperature (WBGT) and apparent evaporative resistance via a progressive heat stress protocol. There was a progressive increase in critical WBGT with increases in convective permeability for P00, Saratoga? Hammer, P01, work clothes and P02. There was no further increase for P05, P10 and P20. A similar pattern was found for diffusive permeability, with the exception of Saratoga? Hammer, which suggested that the convective permeability could explain evaporative cooling better than diffusive permeability.

Statement of Relevance: Protective clothing often interferes with evaporative cooling and thus increases the level of heat stress. While increased diffusion of water vapour is associated with lower evaporative resistances, the convective movement of water vapour is a dominant mechanism and better explains the role of the clothing in heat stress.  相似文献   

20.
《Ergonomics》2012,55(12):1689-1703
Subjective and physiological responses were obtained from six subjects wearing a face mask while exercising (220 W m ?2) for 15 min on a bicycle ergometer. Different combinations of ambient air temperatures (7, 16 and 25°C) and mask air temperatures (22,27 and 33°C) were studied with two different air humidities inside the mask (61 and 86% relative humidity (RH)). Control experiments were performed without the mask at the same ambient temperatures. Skin temperatures, heart rates and skin wettedness were monitored during exercise. The subjects’ thermal sensations, sensations of sweating and skin wettedness and their thermal preferences were assessed at the end of the exercise period. Whole body thermal sensation was primarily determined by the ambient air temperature, but was also significantly influenced by the mask air temperature. This could only partly be explained by the change in respiratory heat loss. Other possible avenues of influence are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号