首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ergonomics》2012,55(10):1503-1514
The primary objective of this paper was to compare in-shoe loading for different models of running shoe using measurements of force distribution. It was hypothesised that a shoe designed with minimal focus on cushioning would demonstrate significantly higher peak forces and rates of loading than running shoes designed with cushioning midsoles. Loading was compared using in-shoe peak forces for six footwear conditions. It was found that peak rate of loading at the heel provided clear distinctions between shoes. In support of the study hypothesis, the shoe with minimal focus on cushioning had a significantly higher rate of loading than all but one of the other test shoes. Data collected for midfoot and forefoot areas of the foot highlighted the importance of considering loading across the foot surface. The results of the present study demonstrate that pressure insoles provide a useful tool for the assessment of loading across the foot plantar surface for different footwear conditions. There are numerous models of running shoe for individuals to select from, with limited information available regarding the performance of the shoes during running. The current study demonstrates differences in loads across the foot plantar surface during running, indicating differences in performance for different footwear models.  相似文献   

2.
Use of pressure insoles to compare in-shoe loading for modern running shoes   总被引:1,自引:0,他引:1  
Dixon SJ 《Ergonomics》2008,51(10):1503-1514
The primary objective of this paper was to compare in-shoe loading for different models of running shoe using measurements of force distribution. It was hypothesised that a shoe designed with minimal focus on cushioning would demonstrate significantly higher peak forces and rates of loading than running shoes designed with cushioning midsoles. Loading was compared using in-shoe peak forces for six footwear conditions. It was found that peak rate of loading at the heel provided clear distinctions between shoes. In support of the study hypothesis, the shoe with minimal focus on cushioning had a significantly higher rate of loading than all but one of the other test shoes. Data collected for midfoot and forefoot areas of the foot highlighted the importance of considering loading across the foot surface. The results of the present study demonstrate that pressure insoles provide a useful tool for the assessment of loading across the foot plantar surface for different footwear conditions. There are numerous models of running shoe for individuals to select from, with limited information available regarding the performance of the shoes during running. The current study demonstrates differences in loads across the foot plantar surface during running, indicating differences in performance for different footwear models.  相似文献   

3.
《Ergonomics》2012,55(11):1450-1461
Abstract

This study investigates foot sweat distribution with and without shoes and the relationship between foot sweat distribution and perceived wetness to enhance guidance for footwear design. Fourteen females performed low-intensity running with nude feet and low- and high-intensity running with shoes (55%VO2max and 75%VO2max, respectively) on separate occasions. Right foot sweat rates were measured at 14 regions using absorbent material applied during the last 5?min of each work intensity. Perceptual responses were recorded for the body, foot and four foot regions. Foot sweat production was 22% greater nude (p?<?.001) and with shoes did not increase with exercise intensity (p?=?.14). Highest sweat rates were observed at the medial ankle and dorsal regions; lowest sweat rates at the toes. Perceptions of wetness and foot discomfort did not correspond with regions of high sweat production or low skin temperature but rather seemed dominated by tactile interactions caused by foot movement within the shoe.

Practitioner summary: This study provides a detailed view of foot sweat distribution for female runners with and without shoes, providing important guidance for sock and footwear design. Importantly, perceptions of wetness and foot discomfort did not correspond with areas of high sweat production. Instead tactile interactions between the foot, sock/shoe play an important role.

Abbreviations: VO2max: maximal oxygen consumption; HR: heart rate; RH: relative humidity; GSL: gross sweat loss; Nude-I1: without socks and shoes, low intensity running; Shod-I1: with socks and shoes, low intensity running; Shod-I2: with socks and shoes, high intensity running  相似文献   

4.
《Ergonomics》2012,55(9):1589-1604
This study examined (1) the perception of running shoes between China (Beijing) and Singapore and (2) whether running shoe preference depended on assessment methods. One hundred (n = 50 each country) Chinese males subjectively evaluated four shoe models during running by using two assessment procedures. Procedure 1 used a visual analogue scale (VAS) to assess five perception variables. Procedure 2 was a ‘head-to-head’ comparison of two shoes simultaneously (e.g. left foot: A and right foot: B) to decide which model was preferred. VAS scores were consistently higher in Beijing participants (p < .001), indicating a higher degree of liking. Singapore participants used the lower end but a wider range of the 15 cm scale for shoe discrimination. Moderate agreement was seen between the VAS and ‘head-to-head’ procedures, with only 14 out of 100 participants matched all 6 pairwise comparisons (median = 4 matches). Footwear companies and researchers should be aware that subjective shoe preference may vary with assessment methods.

Practitioner Summary: Footwear preference depends on country and assessment methods. Running shoe perception differed between Beijing and Singapore Chinese, suggesting that footwear recommendation should be country-specific. Individuals' shoe preference measured by visual analogue scale when wearing complete pairs may not reflect that when directly comparing different models in left and right feet.  相似文献   

5.
《Ergonomics》2012,55(8):895-902
Abstract

To determine the difference in the energy cost of walking and running in a lightweight athletic shoe and a heavier boot, fourteen male subjects (six trained and eight untrained) has their oxygen uptake ([Vdot]O2) measured while walking and running on a treadmill. They wore each type of footwear, athletic shoes of the subjects' choice (average weight per pair = 616 g) and leather military boots (average weight per pair = 1776g), at three walking speeds (4·0, 5·6 and 7·3 km hour?1) and three running speeds (8·9, 10·5 and 12·1 km hour?1). The trials for running were repeated at the same three speeds with the subjects wearing shoes and these shoes plus lead weights. The weight of the shoes plus the lead weights was equal to the weight of the subjects' boots. The [Vdot]O2values with boots were significantly (p < 0·05) higher (5·9?10·2%) at all speeds, except the slowest walk, 4·0 km hour?1Also, [Vdot]O2with shoes plus lead weights were significantly (p<0·05) higher than shoes alone. Weight alone appeared to account for 48-70% of the added energy cost of wearing boots. The relative energy cost ([Vdot]O2, ml kg?1?) of trained and untrained subjects were the same at all speeds. These data indicate that energy expenditure is increased by wearing boots. A large portion of this increase may be attributed to weight of footwear. In addition, the increased energy cost of locomotion with boots appears to place a limiting stress on untrained subjects.  相似文献   

6.
Determining the protective function of sports footwear   总被引:2,自引:0,他引:2  
Lake MJ 《Ergonomics》2000,43(10):1610-1621
To reduce the risk of injury associated with foot-ground interaction during sporting activities, there is a need for adequate assessment of the protective function of sports footwear. The present objectives are to review the typical biomechanical approaches used to identify protection offered by sports footwear during dynamic activities and to outline some of the recent methodological approaches aimed at improving this characterization. Attention is focused on biomechanical techniques that have been shown to best differentiate safety features of footwear. It was determined that subject tests would be used in combination with standard mechanical techniques to evaluate footwear protection. Impact attenuation characteristics of footwear during sporting activities were most distinguished by analysis of tibial shock signals in the frequency and joint time-frequency domains. It has been argued that lateral stability and traction properties of footwear are better assessed using game-like manoeuvres of subjects on the actual sporting surface. Furthermore, the ability of such tests to discriminate between shoes has been improved through methods aimed at reducing or accounting for variability in individual execution of dynamic manoeuvres. Advances in tools allowing measurement of dynamic foot function inside the shoe also aid our assessment of shoe protective performance. In combination, these newer approaches should provide more information for the design of safer sports footwear.  相似文献   

7.
《Ergonomics》2012,55(10):1610-1621
To reduce the risk of injury associated with foot-ground interaction during sporting activities, there is a need for adequate assessment of the protective function of sports footwear. The present objectives are to review the typical biomechanical approaches used to identify protection offered by sports footwear during dynamic activities and to outline some of the recent methodological approaches aimed at improving this characterization. Attention is focused on biomechanical techniques that have been shown to best differentiate safety features of footwear. It was determined that subject tests would be used in combination with standard mechanical techniques to evaluate footwear protection. Impact attenuation characteristics of footwear during sporting activities were most distinguished by analysis of tibial shock signals in the frequency and joint time-frequency domains. It has been argued that lateral stability and traction properties of footwear are better assessed using game-like manoeuvres of subjects on the actual sporting surface. Furthermore, the ability of such tests to discriminate between shoes has been improved through methods aimed at reducing or accounting for variability in individual execution of dynamic manoeuvres. Advances in tools allowing measurement of dynamic foot function inside the shoe also aid our assessment of shoe protective performance. In combination, these newer approaches should provide more information for the design of safer sports footwear.  相似文献   

8.
《Ergonomics》2012,55(12):1301-1317
Very few standards exist for fitting products to people. Footwear is a noteworthy example. This study is an attempt to evaluate the quality of footwear fit using two-dimensional foot outlines. Twenty Hong Kong Chinese students participated in an experiment that involved three pairs of dress shoes and one pair of athletic shoes. The participants' feet were scanned using a commercial laser scanner, and each participant wore and rated the fit of each region of each shoe. The shoe lasts were also scanned and were used to match the foot scans with the last scans. The ANOVA showed significant (p?<?0.05) differences among the four pairs of shoes for the overall, fore-foot and rear-foot fit ratings. There were no significant differences among shoes for mid-foot fit rating. These perceived differences were further analysed after matching the 2D outlines of both last and feet. The point-wise dimensional difference between foot and shoe outlines were computed and analysed after normalizing with foot perimeter. The dimensional difference (DD) plots along the foot perimeter showed that fore-foot fit was strongly correlated (R 2?>?0.8) with two of the minimums in the DD-plot while mid-foot fit was strongly correlated (R 2?>?0.9) with the dimensional difference around the arch region and a point on the lateral side of the foot. The DD-plots allow the designer to determine the critical locations that may affect footwear fit in addition to quantifying the nature of misfit so that design changes to shape and material may be possible.  相似文献   

9.
This study aims to demonstrate a new method of developing a shoe sizing system with a standard fitting for each size for Bangladeshi women based on foot measurements. In this study, bivariate correlation analysis was carried out to determine key foot dimensions of 976 women aged 20 to 60. Simple linear regression analyses of key parameters against foot length (FL) were conducted, and the regression equations assisted in determining grading value and size-fit combinations. Nine sizes with three fittings (narrow, standard, and wide) each were generated where the grading values were 6 mm, 5 mm, 2 mm, and 4 mm for FL, joint girth (JG), joint width (JW), and arch length (AL), respectively. Cross-tabulation analysis verified the sizing system with a coverage rate 94.98% of JG, 88.02% of JW, and 98.77% of AL, where standard fittings covered the maximum number of participants. This study could benefit women in choosing accurate shoe sizes for their feet to ensure proper shoe fitting.Relevance to industryThe proposed new shoe sizing system could assist the footwear industries in manufacturing women's shoes in different sizes with appropriate sizing and grading values, which will provide better fitting than existing systems. In addition, industries could produce shoes with a smaller number of size-fit combinations to accommodate most women's feet.  相似文献   

10.
《Ergonomics》2012,55(2):224-241
Abstract

The great number of slipping accidents indicates that footwear providing good slip resistance must be rare. Slip resistance seems to be a purely physical phenomenon, however, more knowledge of the mechanisms of friction is needed to develop slip-resistant footwear and to ensure safer walking in slippery conditions. In the present study the influence of the normal wear of shoe heels and soles on their frictional properties was clarified. The slip resistance of three types of new and used safety shoes on four relatively slippery floor-contaminant combinations, was assessed with a prototype apparatus, which simulates the movements of a human foot and the forces applied to the underfoot surface during an actual slip. The used shoes were collected from 27 workers in a shipbuilding company and classified by sight into four wear classes: Good, satisfactory, poor, and worn-out. The assessed shoe heels and soles were in general more slippery when new compared to used heels and soles. However, footwear must be discarded before the tread pattern is worn-out. Used microcellular polyurethane (PU) heels and soles gave a considerably higher coefficient of kinetic friction (μk) on contaminated floors than used heels and soles made of compact nitrile (NR) and compact styrene rubber (SR). The heel-slide coefficient of kinetic friction (μkl) for used versus new shoes was on average 66% higher for PU (0·216 versus 0·130), 27% higher for SR (0·143 versus 0·113), and 7% lower for NR (0·098 versus 0·105). The fundamental mechanisms of friction between shoe soles and contaminated floors were also discussed, and experiments with seven slabs of sole materials were carried out to assess contact pressure effects from the viewpoint of slipping. Slip resistance particularly seemed to depend on the squeeze film and the contact pressure effects between the soling materials and the floor. An increasing contact pressure dramatically reduced the μk, thus indicating that the slip resistance varies considerably during the normal gait cycle. Hence, average friction readings are probably not at all decisive from the slip resistance point of view. An instantaneous coefficient of friction may be more relevant, because in walking the time available to achieve a sufficient coefficient of friction to avoid a slip is only a few tenths of a second.  相似文献   

11.
Dimensional differences for evaluating the quality of footwear fit   总被引:1,自引:0,他引:1  
Witana CP  Feng J  Goonetilleke RS 《Ergonomics》2004,47(12):1301-1317
Very few standards exist for fitting products to people. Footwear is a noteworthy example. This study is an attempt to evaluate the quality of footwear fit using two-dimensional foot outlines. Twenty Hong Kong Chinese students participated in an experiment that involved three pairs of dress shoes and one pair of athletic shoes. The participants' feet were scanned using a commercial laser scanner, and each participant wore and rated the fit of each region of each shoe. The shoe lasts were also scanned and were used to match the foot scans with the last scans. The ANOVA showed significant (p < 0.05) differences among the four pairs of shoes for the overall, fore-foot and rear-foot fit ratings. There were no significant differences among shoes for mid-foot fit rating. These perceived differences were further analysed after matching the 2D outlines of both last and feet. The point-wise dimensional difference between foot and shoe outlines were computed and analysed after normalizing with foot perimeter. The dimensional difference (DD) plots along the foot perimeter showed that fore-foot fit was strongly correlated (R(2) > 0.8) with two of the minimums in the DD-plot while mid-foot fit was strongly correlated (R(2) > 0.9) with the dimensional difference around the arch region and a point on the lateral side of the foot. The DD-plots allow the designer to determine the critical locations that may affect footwear fit in addition to quantifying the nature of misfit so that design changes to shape and material may be possible.  相似文献   

12.
Athletes and their coach interpret the training situations differently and this can have important implications for the development of an elite athlete's performance. It is argued that, from a schema-theoretic perspective, the difference in these interpretations needs to be better understood. A post-performance, self-confrontation, interview was conducted with a number of athletes and their coaches. The interviews revealed differences between the athlete and their coach in the information they are aware of. In comparison with athletes, coaches more frequently compared the phenotype with genotype schemata rather than just describing the phenotype schemata. Results suggest SA information elements showed some common ground but also revealed some important differences between the athlete and coach. The awareness was directed externally towards the environment and internally, towards the individual, depending on his/her role. The investigation showed that the schemata used to ‘frame’ the information elements were different, but compatible, between athlete and coach.  相似文献   

13.
《Ergonomics》2012,55(5):617-628
A shoe wearer's comfort is related to the shape of the footbed of a shoe. Even though the footbed shape is important in footwear design, there exists no methodology to evaluate the existing guidelines used in last making. Thirty-two females participated in an experiment where heel seat length, heel seat inclination and heel height were investigated using the profile assessment device. The dependent variables were plantar pressure and perceived feeling of each participant. The results show that perceived feel is best for wedge angles of 4° and 5° at a heel height of 25 mm, 10° and 11° at a heel height of 50 mm and 16° and 18° at a heel height of 75 mm. A regression model was derived and this explained approximately 80% of the variation of perceived feeling with the contact area, peak plantar pressure and percentage of force acting on the forefoot region. Both heel wedge angle and heel seat length play an important role in the perceived feel of high-heeled shoes. This study, in relation to the load-bearing heel part of a shoe, highlights the importance of good footbed design. The findings can be used to design footwear with enhanced comfort.  相似文献   

14.
Studying the impact of high-heeled shoes on kinetic changes and perceived discomfort provides a basis to advance the design and minimize the adverse effects on the human musculoskeletal system. Previous studies demonstrated the effects of inserts on kinetics and perceived comfort in flat or running shoes. No study attempted to investigate the effectiveness of inserts in high heel shoes. The purpose of this study was to determine whether increasing heel height and the use of shoe inserts change foot pressure distribution, impact force, and perceived comfort during walking. Ten healthy females volunteered for the study. The heel heights were 1.0cm (flat), 5.1cm (low), and 7.6cm (high). The heel height effects were examined across five shoe-insert conditions of shoe only; heel cup, arch support, metatarsal pad, and total contact insert (TCI). The results indicated that increasing heel height increases impact force (p<0.01), medial forefoot pressure (p<0.01), and perceived discomfort (p<0.01) during walking. A heel cup insert for high-heeled shoes effectively reduced the heel pressure and impact force (p<0.01), an arch support insert reduced the medial forefoot pressure, and both improved footwear comfort (p<0.01). In particular, a TCI reduced heel pressure by 25% and medial forefoot pressure by 24%, attenuate the impact force by 33.2%, and offered higher perceived comfort when compared to the non-insert condition.  相似文献   

15.
《Ergonomics》2012,55(3):439-443
The purpose of this study was to determine the difference in energy cost for women walking and running in shoes versus heavier boots. Seven subjects wore athletic shoes (mean weight = 514 ± 50g) and leather military boots (mean weight = 1371 ± 104g) at three walking speeds (4·0, 5·6 and 7·3km/hour) and two running speeds (8middot;9 and 10·5 km/hour). During each walking and running trial oxygen uptake ([Vdot]O2 ml kg?1 min?1) was measured. The [Vdot]O2 for women wearing boots were significantly higher (P < 0·05) than for shoes for both walking and running, with the exception of the slowest walking speed. The average increment in energy cost was 1·0% per 100-g increase in weight per pair of footwear. These results are similar to those reported for men from other studies which found increments in energy cost of 0·7 to 0·9% per 100-g increase in weight of footwear.  相似文献   

16.
在服饰鞋厂的加工生产过程中经常会出现断针现象,残留在鞋子里的多余断针等金属异物会威胁人们的人身安全.针对这一问题,本文提出了一种基于深度学习的鞋底金属异物检测系统.首先,将鞋子依次放在传送带上送入检针机,经过X光照射采集图像.之后对采集到的图像进行预处理操作,使金属异物变得清晰.最后通过深度学习网络模型识别当前图像是否含有金属异物,并检测异物所处位置.实验结果表明,经过图像预处理和微调标注框的做法,能有效提高模型识别的精度.本文提出模型的平均精度为97.6%,该结果表明此模型可以有效检测遗留在各种鞋类中不同形状的金属异物,具有很好的商业价值.  相似文献   

17.
《Ergonomics》2012,55(8):999-1008
Current shoe designs do not allow for the comprehensive 3-D foot shape, which means they are unable to reproduce the wide variability in foot morphology. Therefore, the purpose of this study was to capture these variations of children's feet by classifying them into groups (types) and thereby provide a basis for their implementation in the design of children's shoes. The feet of 2867 German children were measured using a 3-D foot scanner. Cluster analysis was then applied to classify the feet into three different foot types. The characteristics of these foot types differ regarding their volume and forefoot shape both within and between shoe sizes. This new approach is in clear contrast to previous systems, since it captures the variability of foot morphology in a more comprehensive way by using a foot typing system and therefore paves the way for the unimpaired development of children's feet. Previous shoe systems do not allow for the wide variations in foot morphology. A new approach was developed regarding different morphological foot types based on 3-D measurements relevant in shoe construction. This can be directly applied to create specific designs for children's shoes.  相似文献   

18.
Mathematical models delivered using both expert knowledge and experimental data improve understanding of dynamic properties of the system under consideration. This is useful for different purposes, such as prediction, diagnosis, decision making, and system control. A data-driven approach has been found to be particularly useful in designing adaptive decision support systems. We demonstrate the usefulness of data-driven models in a custom application designed for sport training management. We have developed a system that makes use of expert knowledge together with measurement data (heart rate, electromyography, and acceleration) as well as environmental (Global Positioning System) in order to generate an optimal training plan. The system performs such tasks as modeling of the athlete's cardiovascular system, estimation of the athlete's parameters, and adaptation of the model to the athlete.  相似文献   

19.
Houser JJ  Decker L  Stergiou N 《Ergonomics》2008,51(12):1847-1859
This study aims to investigate the effects of shoe traction and obstacle height on friction during walking to better understand the mechanisms required to avoid slippage following obstacle clearance. Ten male subjects walked at a self-selected pace during eight different conditions: four obstacle heights (0%, 10%, 20% and 40% of limb length) while wearing two different pairs of shoes (low and high traction). Frictional forces were calculated from the ground reaction forces following obstacle clearance, which were sampled with a Kistler platform at 960 Hz. All frictional peaks increased with increases in obstacle height. Low traction shoes yielded smaller peaks than high traction shoes. The transition from braking to propulsion occurred sooner due to altered control strategies with increased obstacle height. Collectively, these results provided insights into kinetic strategies of leading limb when confronted with low traction and high obstacle environments. This study provides valuable information into the adaptations used to reduce the potential of slips/falls when confronted with environments characterised by low shoe-floor friction and obstacles. It also provides the necessary foundation to explore the combined effects of shoe traction and obstacle clearance in elderly people, more sensitive to slippage.  相似文献   

20.
Assessing footwear slip-resistance is critical to preventing slip and fall accidents. The STM 603 (SATRA Technology) is commonly used to assess footwear friction but its ability to predict human slips while walking is unclear. This study assessed this apparatus’ ability to predict slips across footwear designs and to determine if modifying the test parameters alters predictions. The available coefficient of friction (ACOF) was measured with the device for nine different footwear designs using 12 testing conditions with varying vertical force, speed and shoe angle. The occurrence of slipping and the required coefficient of friction was quantified from human gait data including 124 exposures to liquid contaminants. ACOF values varied across the test conditions leading to different slip prediction models. Generally, a steeper shoe angle (13°) and higher vertical forces (400 or 500?N) modestly improved predictions of slipping. This study can potentially guide improvements in predictive test conditions for this device.

Practitioner Summary: Frictional measures by the STM603 (SATRA Technology) were able to predict human slips under liquid contaminant conditions. Test parameters did have an influence on the measurements. An increased shoe-floor testing angle resulted in better slip predictions than test methods specified in the ASTM F2913 standard.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号