首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In pushing and pulling wheeled carts, the direction of force exertion may, beside the force magnitude, considerably affect musculoskeletal loading. This paper describes how force direction changes as handle height and force level change, and the effects this has on the loads on the shoulder and low back. Eight subjects pushed against or pulled on a stationary bar or movable cart at various handle heights and horizontal force levels while walking on a treadmill. The forces at the hands in the vertical and horizontal direction were measured by a force-transducer. The forces, body movements and anthropometric data were used to calculate the net joint torques in the sagittal plane in the shoulder and the lumbosacral joint. The magnitudes and directions of forces did not differ between the cart and the bar pushing and pulling. Force direction was affected by the horizontal force level and handle height. As handle height and horizontal force level increased, the pushing force direction changed from 45 degrees (SD 3.3 degrees) downward to near horizontal, while the pulling force direction changed from pulling upward by 14 degrees (SD 15.3 degrees) to near horizontal. As a result, it was found that across conditions the changes in force exertion were frequently reflected in changes in shoulder torque and low back torque although of a much smaller magnitude. Therefore, an accurate evaluation of musculoskeletal loads in pushing and pulling requires, besides a knowledge of the force magnitude, knowledge of the direction of force exertion with respect to the body.  相似文献   

2.
Pushing and pulling are potential risk factors for work-related low back disorders (WRLBDs). While several studies have evaluated differences in work methods related to work experience, such evidence for dynamic pushing and pulling is limited. Eight novices and eight experienced workers completed dynamic push/pull tasks using a cart weighted to 250% of individual body mass in two different configurations (preferred vs. elbow handle heights). Multiple measures [hand forces, torso kinematics and kinetics, and required coefficient of friction (RCOF)] were obtained to assess WRLBD and slip risks. Experienced workers generated higher medio-lateral hand forces, during both pulls and pushes, though with a more substantial difference during pushes (∼74%), and which involved the use of hand force components other than to move the cart in an anterior-posterior direction. Experienced workers also had lower peak torso kinematics in flexion/extension and lateral bending, and lower torso flexion/extension kinetics. The latter is suggestive of a lower risk for WRLBDs, though levels of exposures to WRLBD risk were low to moderate in both groups and were often relatively small and inconsistent across the task configurations. Group-level differences in RCOF were quite small, indicating a comparable slip risk between the two groups. Thus, it was considered inconclusive whether the work methods used by experienced workers during dynamic pushing and pulling are advantageous regarding WRLBD and slip risks.  相似文献   

3.
《Ergonomics》2012,55(2):269-281
The aim was to determine gender differences regarding exerted forces and physiological load during push/pull tasks simulating the daily working practice of postal workers. Eight female and four male workers handled four-wheeled cages under eight conditions corresponding to the cage weight (130, 250, 400, 550 kg) and the direction of force exertion (pushing, pulling). For each of the five dependent variables, average force, initial force, ending force, oxygen uptake and heart rate, two analyses of variance with repeated measurements were performed, i.e. with and without correction for the worker's body weight, body height and maximum capacity regarding the dependent variable. Exerted forces and physiological load were high for the cages weighing 400 and 550 kg. Gender differences were significant for all dependent variables (p=0.030-0.000). When the personal factors were included in the model, male workers exerted significantly higher average forces and ending forces than their females, while differences regarding initial forces and physiological load were not significant. However, none of the personal factors were significantly related to any of the dependent variables. It is concluded that gender differences in exerted forces were not caused by differences in anthropometry and maximum capacity, but due to application of different work methods by women in order to balance work demands and work ability.  相似文献   

4.
Recent epidemiological studies show that pushing and pulling increase the risks of shoulder complaints and not necessarily of low back complaints. Moreover, the magnitude of the exerted hand forces during pushing and pulling is poorly related to the magnitude of the mechanical loading of the low back and the shoulder. In light of that, this paper combines results of several studies to present an approach for evaluating not only the exerted hand forces, but also the low back and shoulder load during pushing and pulling in practice. The approach specifies, based on scientific evidence, that (1) in order to validly obtain exposure (frequency and duration) to pushing and pulling, 10 workers should be observed during eight periods of 30 min; (2) how the exerted hand forces and the load of the low back and shoulder can be estimated in practice based solemnly on the weight of the object, one-handed or two-handed pushing or pulling, and the height of the handle; and finally, (3) how these outcomes can be evaluated in combination with existing guidelines regarding exerted hand forces, compression forces on the low back and the moments at the shoulder. Two cases will be presented here to illustrate the application of the approach.

Relevance to industry

The presented approach is the first to offer practitioners a fairly simple method for the ergonomic evaluation of pushing and pulling carts and four-wheeled containers in practice, especially as regarding the shoulder load.  相似文献   

5.
The musculoskeletal loads from moving trolleys aboard aircraft were assessed by observation of trolley handling on planes and by physical workload analyses of pushing and pulling of trolleys in a laboratory set up. Trolley handling by a total of 15 female flight attendants was observed on 10 short- and medium-distance flights in different types of aircraft. About 25 selected flight attendants (22 females; 3 males) of five German airlines took part in the laboratory study, which comprised three-dimensional (3D) measurements of posture and hand forces during pushing and pulling of trolleys in a variety of configurations. From the on-flight observations performed, between 150 and 250 trolley movements can be projected for a work shift. The greatest physical workload is to be expected at the beginning of service: The trolleys are fully laden then, and the cabin floor can still be inclined up to 8°, as the aircraft is still climbing, particularly on short-distance flights. The laboratory investigation revealed that the musculoskeletal workload from pushing and pulling depends essentially on the trolley load and on the gradient of the cabin floor. In addition, the degree of stressing depends significantly on the trolley type, mode of handling and personal dexterity. The up/down force component perpendicular to the direction of motion often achieved considerable amplitudes-in some cases equal to or exceeding the force in the direction of movement. The posture analysis demonstrated that pulling forced the flight attendants to adopt ergonomically unfavourable postures such as pronounced flexion of the back, particularly among female subjects. The highest values for flexion of the back occurred while pulling the half-size trolley. The results demonstrate that female flight attendants are likely to overload themselves if they frequently have to move heavily laden trolleys unaided on an inclined cabin floor.

Relevance to industry

On short distance flights, flight attendants have been complaining increasingly of high physical workload from manoeuvring trolleys. On the basis of the presented data airline companies may improve the trolley handling skills of their flight attendances by practical trainings and may ergonomically optimize the general service procedures aboard aircrafts.  相似文献   

6.
《Ergonomics》2012,55(9):801-821
The objective of the present study was to determine whether differences in the frictional properties of a floor surface may affect the kinematics and kinetics of pushing and pulling. Eight male participants were required to push and pull a four-wheeled trolley over two level surfaces, on which were mounted floor coverings with good (safety floor) and reduced (standard floor) frictional properties. A psychophysical approach was used to determine the initial maximum acceptable horizontal force required to move the trolley over a short distance (3 m). Three-dimensional (3D) hand and ground reaction forces and 3D postures were measured during initial force exertions. The results showed that psychophysically derived measures of initial horizontal force and horizontal components of hand forces did not differ significantly between floor surfaces. Despite the ability to exert similar forces, the measured maximum coefficient of friction varied according to floor surface. These changes reflected significant alterations in vertical and horizontal components of ground reaction and vertical hand forces, suggesting that participants had maximized the frictional properties available to them. Postures also changed as a consequence of floor surface, with significant changes occurring in knee flexion and trunk extension. This study has shown that handlers involved in the pushing and pulling of trolleys are capable of adjusting posture and the direction of hand and foot forces in order to compensate for reduced levels of floor friction. This has particular relevance when assessing the musculoskeletal loads imposed on the handler and the likely mechanisms of injury resulting from variations in floor conditions when workers undertake pushing and pulling tasks in the workplace.  相似文献   

7.
Despite substantial epidemiological evidence relating overhead exertions with work‐related musculoskeletal disorders (WMSD) of the neck, effects of such exertions on the loading of neck or cervical spine musculature are not well understood. In this study, the effects of overhead pushing and pulling exertions on the loading of the cervical spine were evaluated using electromyography (EMG) and subjective discomfort ratings. Additionally, the role of gender as well as individual strength on the loading of neck musculature during such exertions was evaluated. Twenty‐four healthy individuals (12 men and 12 women) participated in this study. Each participant performed overhead pushing and pulling exertions, exerting 25%, 50%, and 75% of their respective maximum strengths. Overhead pushing exertions were found to be significantly more strenuous to the neck musculature than were the pulling exertions. Gender had no significant effect on the activities of the neck muscles. Participants with high strength, however, were able to exert more force at comparatively low muscle activation levels. Subjective discomfort ratings were strongly correlated with the EMG data. At various workplaces, avoiding overhead exertions is rather impossible due to material, interface, and site constraints. Based on the results of this study, however, during such exertions, an interchange between directions of force application could prevent sustained loading of the neck muscles, fatigue, and consequently the probability of neck WMSD incidents. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
The primary objective of this study was to quantify the effect of dynamic cart pushing exertions on the biomechanical loading of shoulder and low back. Ten participants performed cart pushing tasks on flat (0°), 5°, and 10° ramped walkways at 20 kg, 30 kg, and 40 kg weight conditions. An optoelectronic motion capturing system configured with two force plates was used for the kinematic and ground reaction force data collection. The experimental data was modeled using AnyBody modeling system to compute three-dimensional peak reaction forces at the shoulder complex (sternoclavicular, acromioclavicular, and glenohumeral) and low back (lumbosacral) joints. The main effect of walkway gradient and cart weight, and gradient by weight interaction on the biomechanical loading of shoulder complex and low back joints was statistically significant (all p < 0.001). At the lumbosacral joint, negligible loading in the mediolateral direction was observed compared to the anterioposterior and compression directions. Among the shoulder complex joints, the peak reaction forces at the acromioclavicular and glenohumeral joints were comparable and much higher than the sternoclavicular joint. Increased shear loading of the lumbosacral joint, distraction loading of glenohumeral joint and inferosuperior loading of the acromioclavicular joint may contribute to the risk of work-related low back and shoulder musculoskeletal disorder with prolonged and repetitive use of carts.  相似文献   

9.
The aim was to investigate the effect of ergonomics guidelines on muscular activity, postural and cardiovascular load during cleaning. Eighteen cleaners performed 10 min of cleaning tasks in two locations; three min in a laboratory and seven min in a lecture room. All participants performed the task with or without focusing on ergonomics guidelines (ergonomics/non-ergonomics session). Bipolar surface electromyography was recorded bilaterally from upper trapezius and erector spinae muscles. A tri-axial accelerometer package was mounted on the low back (L5-S1) to measure postural changes, and the cardiovascular load was estimated by electrocardiogram. Ergonomics sessions resulted in lower muscular load, a more complex pattern of muscular activity, lower range of motion and angular velocity of the trunk as well as lower cardiovascular load compared with non-ergonomics sessions (p < 0.05). The study highlighted the multiple musculoskeletal and cardiovascular benefits of following ergonomics guidelines during cleaning tasks. PRACTITIONER SUMMARY: This study investigated the effects of following instructive ergonomics guidelines during cleaning tasks (daily curriculum of cleaning including mopping, sweeping, changing trash bins and cleaning of desks and blackboards). Following the ergonomics guidelines reduces the general workload and induces a more complex pattern of muscular activity. The study contributes with novel knowledge concerning ergonomics guidelines and work techniques.  相似文献   

10.
A new procedure for determining the risk of injury associated with manual pushing and pulling was developed based upon characteristics of the user population (i.e. age, gender and stature) and task requirements (i.e. working height, task frequency and travel distance). The procedure has been integrated into international (ISO, 2004) and European (CEN, 2004) standards for determining recommended force limits for pushing and pulling that can be adapted to suit the user population. These limits consider the muscular strength of the intended target population, as well as the compressive loads on the lumbar spine. Examples are provided to demonstrate variability of the proposed ‘safety’ limits for different task scenarios.

Relevance to industry

The manual handling of physical loads are known risk factors associated with work-related musculoskeletal disorders (WMSD). These disorders are common throughout the industry and may incur considerable costs to both the employer and the employee. The new risk rating procedure enables pushing and pulling tasks to be more closely aligned to the capabilities of the user population and, therefore, has an important role to play in helping to reduce the suffering and costs associated with these disorders.  相似文献   

11.
Flight attendants report on high physical load and complaints particularly focussing on the lower back. These findings are mainly ascribed to pushing and pulling of trolleys during the ascent and descent flight phases. Within an interdisciplinary experimental study, the load on the lumbar spine of flight attendants during trolley handling aboard aircraft was analysed based on laboratory measurements regarding posture and exerted forces as well as on subsequent biomechanical model calculations. Forces and moments of force at the lumbosacral disc were quantified for 458 manoeuvres performed by 25 flight attendants in total (22 female, 3 male).Lumbar load varies according to handling mode (pushing, pulling), floor gradient (0°, 2°, 5°, 8°), trolley type (half-, full-size trolley), trolley loading (empty, medium, full) and, in addition, according to individual execution technique. For each of the resulting 48 task configurations, lumbar load was evaluated with respect to potential biomechanical overload by applying work-design recommendations for disc compression and moment of force. Irrespective of floor inclination, trolley weight and individual performance, pushing of small trolleys is combined with acceptable lumbar load, pulling with critical load. Pushing or pulling large trolleys occasionally yield to critical lumbar load, in particular, when heavy or heaviest containers are moved on relatively steep or steepest surfaces.To diminish overload risk relevantly, top-edge grasp positions should be avoided for pulling of half-size trolleys, whereas for the other cases, grasping at the upper edge of the trolley is recommended.

Relevance to industry

The provided study illustrates lumbar load of flight attendants during trolley handling aboard aircraft for typical task conditions and individual execution techniques. Specified hints for work design regarding posture and grasp position enable to avoid biomechanical low-back overload for flight attendants. Furthermore, trolley properties may be reconsidered, regular maintenance of rollers should be guaranteed.  相似文献   

12.
The primary objective of the present study was to quantify the relative effect of the magnitude and direction of the exerted push force and of trunk inclination on the mechanical load at the low back using a regression analysis for correlated data. In addition, we explored the effects of handle height and type of pushing activity (standing or walking) on the magnitude and direction of exerted forces, trunk inclination, and low back loading when pushing a four-wheeled cart on a treadmill. An experimental setup was designed in which nine participants pushed a four-wheeled cart on a treadmill. Kinematics and reaction forces on the hand were measured to calculate the net moment at the L5–S1 intervertebral disc. Results show that the magnitude and direction of the exerted push force and the trunk inclination significantly and independently affect low back load. It is concluded that for the ergonomic evaluation of pushing tasks, the inclination of the trunk should be considered, in addition to the magnitude and direction of exerted forces.

Relevance to industry

Pushing carts is a common activity for a considerable part of the workforce and has been associated with musculoskeletal complaints. This paper shows that not only the magnitude of exerted forces determines the low back load but also the direction of the exerted forces and the inclination of the trunk should be considered for ergonomic evaluation.  相似文献   

13.
《Ergonomics》2012,55(12):1551-1563
Abstract

In the investigation of lower back stress, the muscle forces of the erector spinae and the rectus abdominis are often calculated using the two-dimensional biomechanical model. These muscle forces are used to estimate the compressive forces at L5/S1 disc This paper presents a study of the muscle forces predicted by a two-dimensional biomechanical model during pushing and pulling and myoelectric activity from the corresponding muscles. The goal was to investigate whether a simple two muscle torso model would reasonably estimate the muscle actions in pushing and pulling tasks. Six subjects participated in the experiment. EMG (rms) value was used as an indicator of muscle forces. The results show high correlation between the predicted muscle forces and the measured root-mean-square EMG values in trunk pushing and pulling (r2=0.93) and hand pushing and pulling (r2=0.96) in an erect posture with hips braced but low in hand pushing and pulling using a free posture (r2=0.37).  相似文献   

14.
Lower back muscle forces in pushing and pulling   总被引:1,自引:0,他引:1  
K S Lee  D B Chaffin  A M Waikar  M K Chung 《Ergonomics》1989,32(12):1551-1563
In the investigation of lower back stress, the muscle forces of the erector spinae and the rectus abdominis are often calculated using the two-dimensional biomechanical model. These muscle forces are used to estimate the compressive forces at L5/S1 disc. This paper presents a study of the muscle forces predicted by a two-dimensional biomechanical model during pushing and pulling and myoelectric activity from the corresponding muscles. The goal was to investigate whether a simple two muscle torso model would reasonably estimate the muscle actions in pushing and pulling tasks. Six subjects participated in the experiment. EMG (rms) value was used as an indicator of muscle forces. The results show high correlation between the predicted muscle forces and the measured root-mean-square EMG values in trunk pushing and pulling (r2 = 0.93) and hand pushing and pulling (r2 = 0.96) in an erect posture with hips braced but low in hand pushing and pulling using a free posture (r2 = 0.37).  相似文献   

15.
《Ergonomics》2012,55(5):728-742
Recommendations on backpack loading advice restricting the load to 10% of body weight and carrying the load high on the spine. The effects of increasing load (0%–5%–10%–15% of body weight) and changing the placement of the load on the spine, thoracic vs. lumbar placement, during standing and gait were analysed in 20 college-aged students by studying physiological, biomechanical and subjective data. Significant changes were: (1) increased thorax flexion; (2) reduced activity of M. erector spinae vs. increased activation of abdominals; (3) increased heart rate and Borg scores for the heaviest loads. A trend towards increased spinal flexion, reduced pelvic anteversion and rectus abdominis muscle activity was observed for the lumbar placement. The subjective scores indicate a preference for the lumbar placement. These findings suggest that carrying loads of 10% of body weight and above should be avoided, since these loads induce significant changes in electromyography, kinematics and subjective scores. Conclusions on the benefits of the thoracic placement for backpack loads could not be drawn based on the parameter set studied.  相似文献   

16.
《Ergonomics》2012,55(6):543-560
The objective of this study was to compare the mechanical and perceived workload when working with a redesigned two-wheeled container and working with a standard two-wheeled container for refuse collecting. The three changes in the design of the container were a displacement of the position of the centre of mass in the direction of the axis of the wheels, a slight increase in the height of the handle and a slight increase in the horizontal distance between the handle and the wheel-axis, and an increase in the diameter of the wheels. The volume of the container remained 0.240 m3. Nine refuse collectors performed some of their most frequent daily activities with both types of containers in the laboratory. Kinematics and exerted hand forces were assessed as input for detailed 3D biomechanical models of the low back and shoulder to estimate net moments at the low back and shoulders, compressive forces at the low back and contact forces at the glenohumeral joint. Also, the refuse collectors rated the ease of handling the two-wheeled containers on a five point scale. The use of the redesigned container resulted in a decrease of the exerted hand forces of 27%, decreases in the net moments at the low back and shoulders of 8% and 20%, respectively, and a decrease of 32% of the contact force at the glenohumeral joint when compared to the standard container. However, pulling an empty redesigned container on to the pavement resulted in an increase of the shoulder moment of more than 100%. No differences between container types were found for the compressive forces at the low back. Pushing and pulling with the redesigned container was rated as easier than pushing and pulling with the standard container. No differences in subjective ratings were found for the tasks of turning the container or pulling an empty container onto the pavement. It is concluded that, provided that empty containers are placed back onto the pavement as infrequently as possible, the introduction of the redesigned container could result in a reduction of the low back and shoulder load for refuse collectors.  相似文献   

17.
The aim was to determine gender differences regarding exerted forces and physiological load during push/pull tasks simulating the daily working practice of postal workers. Eight female and four male workers handled four-wheeled cages under eight conditions corresponding to the cage weight (130, 250, 400, 550 kg) and the direction of force exertion (pushing, pulling). For each of the five dependent variables, average force, initial force, ending force, oxygen uptake and heart rate, two analyses of variance with repeated measurements were performed, i.e. with and without correction for the worker's body weight, body height and maximum capacity regarding the dependent variable. Exerted forces and physiological load were high for the cages weighing 400 and 550 kg. Gender differences were significant for all dependent variables (p = 0.030-0.000). When the personal factors were included in the model, male workers exerted significantly higher average forces and ending forces than their females, while differences regarding initial forces and physiological load were not significant. However, none of the personal factors were significantly related to any of the dependent variables. It is concluded that gender differences in exerted forces were not caused by differences in anthropometry and maximum capacity, but due to application of different work methods by women in order to balance work demands and work ability.  相似文献   

18.
Workspace design can often dictate the muscular efforts required to perform work, impacting injury risk. Within many environments, industrial workers often use sub-maximal forces in offset directions in to accomplish job tasks. The purpose of this research was to develop methods to estimate shoulder muscle activation during seated, static, sub-maximal exertions in off-axis (non-cardinal) directions. Surface EMG signals were recorded from 14 upper extremity muscles in 20 right-handed university aged, right-handed males (age: 22 ± 3 years, weight: 77.5 ± 11.1 kg, height 179.0 ± 7.0 cm) participated in this study. Each participant performed 60 submaximal exertions (40N) directed at 4 off-axis phase angles of 45° (45°, 135°, 225°, and 315°) in 3 planes (frontal, sagittal, and transverse) in 5 hand locations within a right handed reach envelope. The influence of hand location and force direction on muscle activity was evaluated with a forced-entry stepwise regression model. The ability of previously published on-axis prediction equations to predict muscle activity during these off-axis exertions was also evaluated. Within each muscle, activity levels were affected by both hand location and three-dimensional force direction and activation levels ranged from <1 to 37 %MVE. For each force direction there were 75 predictive equations selected and used, and the specific equation that best predicted activation depended on the muscle, exertion direction and hand location evaluated. This work assists ergonomic workplace design to minimize muscle demands during commonly performed off-axis exertions. These estimated demands can be employed to improve workplace design to reduce workplace injuries and enhance worker productivity.  相似文献   

19.
Quantifying biomarkers related to tissues commonly injured in occupational settings may be useful for exposure assessment or predicting injury risk. Here, serum levels of Cartilage Oligomeric Matrix Protein (COMP), Interleukin-6 (IL6), and Creatine Kinase (CK) were obtained before and after participants completed a repetitive lumbar flexion/extension task. The task was done for one hour, using five combinations of external load and frequency. COMP levels did not change over time or between exposure conditions. IL6 levels were significantly affected by time and by external load, while CK levels were significantly affected by the load × frequency interaction. Greater external load and frequency (for CK only) resulted in greater peak values of IL6 and CK, and both biomarkers recovered by 24 h after task completion. Since IL6 and CK levels exhibited a dose–response relationship to exposure levels, they may have potential use in the occupational domain.Relevance to industryThis study investigated the effects of external load and frequency, during repetitive lumbar flexion/extension, on biomarkers that reflect tissue injury. Responses of biomarkers related to muscle use and damage (IL6 and CK) support earlier epidemiological evidence, and these may have future value in predicting occupational injury risk.  相似文献   

20.
《Ergonomics》2012,55(8):1099-1113
The objective of this study was to measure the three-dimensional hand forces people exert to initiate a cart push or pull for two cart loads: 73 and 181 kg, and three handle heights: knuckle, elbow, and shoulder heights. The cart used was equipped with 15.24 cm (6 in) diameter wheels. The floor was covered with carpet tiles. The laboratory-measured hand force exertions were compared to the minimum forces needed to push/pull the cart under the same conditions and to the psychophysical initial push/pull force limits. For pushing and pulling, the measured anterior-posterior hand forces were 2–2.4 times the minimum required forces. For the heavier cart load, lower forces were applied as handle height increased. Pull forces were 7% higher than push forces. The smallest vertical forces were measured at elbow height. Strength capability and gender did not have an effect on the applied forces. The mean strength percentile for the male sample was 64%, while the mean strength percentile for the female sample was 13% as determined from the Adjusted Torso Lift Strength Test and population strength data for this test. The comparison with the psychophysical limits indicated that the tasks were well within the maximum acceptable initial forces for males, but not for females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号