首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ergonomics》2012,55(11):1545-1559
Abstract

Standards assume vibration discomfort depends on the frequency and direction of whole-body vibration, with the same weightings for frequency and direction at all magnitudes. This study determined equivalent comfort contours from 1.0 to 10?Hz in each of three directions (fore-and-aft, lateral, vertical) at magnitudes in the range 0.1 to 3.5?ms?2?r.m.s. Twenty-four subjects sat on a rigid flat seat with and without a beanbag, altering the pressure distribution on the seat but not the transmission of vibration. The rate of growth of vibration discomfort with increasing magnitude of vibration differed between the directions of vibration and varied with the frequency of vibration. The frequency-dependence and direction-dependence of discomfort, therefore, depended on the magnitude of vibration. The beanbag did not affect the frequency-dependence or direction-dependence of vibration discomfort. It is concluded that different weightings for the frequency and direction of vibration are required for low and high magnitude vibration.

Practitioner summary: When evaluating whole-body vibration to predict vibration discomfort, the weightings appropriate to different frequencies and different directions of vibration should depend on the magnitude of vibration. This is overlooked in all current methods of evaluating the severity of whole-body vibration.  相似文献   

2.
Yu Huang  Penglin Zhang 《Ergonomics》2019,62(3):420-430
Current standards assume the same frequency weightings for discomfort at all magnitudes of vibration, whereas biodynamic and psychological studies show that the frequency-dependence of objective and subjective responses of the human body depends on the magnitude of vibration. This study investigated the discomfort of seated human body caused by vertical whole-body vibration over the frequency range 2–100?Hz at relatively high magnitudes from 1.0 to 2.5?ms?2 r.m.s. Twenty-eight subjects (15 males and 13 females) judged the discomfort using the absolute magnitude estimation method. The rate of growth of discomfort with increasing vibration magnitude was highly dependent on the frequency, so the shapes of the equivalent comfort contours depended on the magnitude of vibration and no single frequency weighting would be appropriate for all magnitudes. The equivalent comfort contours indicated that the standards and previous relevant studies underestimated the vibration discomfort at frequencies greater than about 30?Hz.

Practitioner Summary: The discomfort caused by vertical vibration at relatively high frequencies can be severe, particularly at relatively great magnitudes in transport. This study provides the frequency-dependence of vibration discomfort at 2–100?Hz, and shows how the frequency weightings in the current standards can be improved at relatively high frequencies.  相似文献   


3.
Zhen Zhou 《Ergonomics》2014,57(5):714-732
Frequency weightings for predicting vibration discomfort assume the same frequency-dependence at all magnitudes of vibration, whereas biodynamic studies show that the frequency-dependence of the human body depends on the magnitude of vibration. This study investigated how the frequency-dependence of vibration discomfort depends on the acceleration and the force at the subject–seat interface. Using magnitude estimation, 20 males and 20 females judged their discomfort caused by sinusoidal vertical acceleration at 13 frequencies (1–16 Hz) at magnitudes from 0.1 to 4.0 ms? 2 r.m.s. The frequency-dependence of their equivalent comfort contours depended on the magnitude of vibration, but was less dependent on the magnitude of dynamic force than the magnitude of acceleration, consistent with the biodynamic non-linearity of the body causing some of the magnitude-dependence of equivalent comfort contours. There were significant associations between the biodynamic responses and subjective responses at all frequencies in the range 1–16 Hz.

Practitioner Summary: Vertical seat vibration causes discomfort in many forms of transport. This study provides the frequency-dependence of vibration discomfort over a range of vibration magnitudes and shows how the frequency weightings in the current standards can be improved.  相似文献   

4.
《Ergonomics》2012,55(12):1228-1239
The discomfort of standing people experiencing steady-state vibration can be predicted from the root-mean-square (rms) of the frequency-weighted acceleration, but alternative methods are advocated for evaluating motions containing transients. Using the method of magnitude estimation, 20 standing subjects estimated the discomfort caused by octave-bandwidth random vibrations at two centre frequencies (1 and 8 Hz) in each of three directions (fore-and-aft, lateral and vertical). For motions having seven different crest factors (i.e. the ratio of the peak to the rms value), the vibration magnitude required for similar discomfort, and a method predicting this equivalence, were determined. The rms method (with an exponent of 2) and the root-mean-quad method (exponent of 4) tended to, respectively, underestimate and overestimate the discomfort of high-crest factor motions. The optimum evaluation method had an exponent of about 3.0 for 1-Hz motions and 3.5 for 8-Hz motions. Current standards do not provide reliable indications of when vibration discomfort can be predicted by an rms measure.

Statement of Relevance: Current standards recommend alternatives to the root-mean-square method (exponent of 2.0) for predicting the discomfort caused by transient vibration. The alternatives include the root-mean-quad or vibration dose value (exponent of 4.0) and peak values. An exponent of 2.0 underestimates, but an exponent of 4.0 slightly overestimates, the discomfort of transients experienced by standing people. Peak values are not appropriate.  相似文献   

5.
Yu Huang 《Ergonomics》2014,57(11):1724-1738
This study investigated the prediction of the discomfort caused by simultaneous noise and vibration from the discomfort caused by noise and the discomfort caused by vibration when they are presented separately. A total of 24 subjects used absolute magnitude estimation to report their discomfort caused by seven levels of noise (70–88 dBA SEL), 7 magnitudes of vibration (0.146–2.318 ms? 1.75) and all 49 possible combinations of these noise and vibration stimuli. Vibration did not significantly influence judgements of noise discomfort, but noise reduced vibration discomfort by an amount that increased with increasing noise level, consistent with a ‘masking effect’ of noise on judgements of vibration discomfort. A multiple linear regression model or a root-sums-of-squares model predicted the discomfort caused by combined noise and vibration, but the root-sums-of-squares model is more convenient and provided a more accurate prediction of the discomfort produced by combined noise and vibration.  相似文献   

6.
《Ergonomics》2012,55(7):1431-1444
Abstract

An experiment is described in which eight subjects performed three simple tasks (A, B and C) in static conditions and during exposure to whole-body vertical (z-axis) vibration at 0-5 and 40 Hz, at an acceleration magnitude of 2-1 ms-2 r.m.s. All subjects performed all conditions with and without an arm support. The objective was to explore the mechanisms that may cause disruption of manual control performance during vibration exposure. With task A subjects simply held a control with no visual feedback of activity at the control. With task B, subjects used the control to hold a controlled element stationary on a display. Task C was the same as task B, except that subjects had improved visual feedback of movement of the controlled element. Results showed that both 0-5 and 40 Hz vibration caused significant increases in control activity at frequencies of up to about 1 Hz compared with the condition without vibration. With visual feedback in task C, subjects were able to detect drifting of the controlled element on the display and introduced compensatory control activity at frequencies above about 0 2 Hz. The arm support reduced the magnitude of vibration transmitted to the control at 4-0 Hz, but did not otherwise change the results.  相似文献   

7.
《Ergonomics》2012,55(3):263-276
Abstract

The discomfort produced by multiple frequency whole-body vertical vibration has been studied in three expriments. Subjects were required to adjust the level of a 10 Hz sinusoidal vibration such that it produced a degree of discomfort equivalent to that caused by a variety of multiple frequency stimuli including motions containing predominant beats and up to four sinusoidal components. The levels of the 10 Hz vibration equivalent to the complex motions were always well predicted by the root mean square of the levels of 10 Hz equivalent to the individual sinusoidal components in the complex motion. Tho equivalent discomfort of the multiple frequency motions could therefore be determined by weighting the vibration spectrum with an electronic network having a frequency response given by the manner in which discomfort due to vibration varies with vibration frequency. The possibility of inhibition occurring in the response to multiple frequency motions was investigated and it was concluded that tho complexity inherent in methods based on models of inhibition was unnecessary. The present findings have been compared with the procedures for assessing multiple frequency motions given in the current International Standard on the evaluation of human exposure to whole-body vibration.  相似文献   

8.
Jonathan DeShaw 《Ergonomics》2016,59(4):568-581
This work presents a predictive model to evaluate discomfort associated with supine humans during transportation, where whole-body vibration and repeated shock are predominant. The proposed model consists of two parts: (i) static discomfort resulting from body posture, joint limits and ambient discomfort; and (ii) dynamic discomfort resulting from the relative motion between the body segments as a result of transmitted vibration. Twelve supine subjects were exposed to single and 3D random vibrations and 3D shocks mixed with vibrations. The subjects’ reported discomfort and biodynamic response were analysed under different support conditions, including a rigid surface, a stretcher and a stretcher with a spinal backboard. The results demonstrated good correlations between the predictive discomfort and the reported discomfort for the different conditions under consideration, with R2 = 0.69–0.94 for individual subjects and R2 = 0.94 for the group mean. The results also indicated a strong relationship between the head-neck and trunk angular velocities and discomfort during supine transportation.

Practitioner Summary: The quantification of discomfort of supine humans under vibration and shocks by using a predictive model is an important contribution to this field, whereby the efficacy of different transport systems can be compared. The predictive discomfort model can be used as design criteria for ergonomic enhancement in supine transportation of humans.  相似文献   


9.
《Ergonomics》2012,55(6):771-790
Judgements of overall seating comfort in dynamic conditions sometimes correlate better with the static characteristics of a seat than with measures of the dynamic environment. This study developed qualitative models of overall seat discomfort to include both static and dynamic seat characteristics. A dynamic factor that reflected how vibration discomfort increased as vibration magnitude increased was combined with a static seat factor which reflected seating comfort without vibration. The ability of the model to predict the relative and overall importance of dynamic and static seat characteristics on comfort was tested in two experiments. A paired comparison experiment, using four polyurethane foam cushions (50, 70, 100, 120 mm thick), provided different static and dynamic comfort when 12 subjects were exposed to one-third octave band random vertical vibration with centre frequencies of 2.5 and 5.5 Hz, at magnitudes of 0.00, 0.25 and 0.50 m.s-2 rms measured beneath the foam samples. Subject judgements of the relative discomfort of the different conditions depended on both static and dynamic characteristics in a manner consistent with the model. The effect of static and dynamic seat factors on overall seat discomfort was investigated by magnitude estimation using three foam cushions (of different hardness) and a rigid wooden seat at six vibration magnitudes with 20 subjects. Static seat factors (i.e. cushion stiffness) affected the manner in which vibration influenced the overall discomfort: cushions with lower stiffness were more comfortable and more sensitive to changes in vibration magnitude than those with higher stiffness. The experiments confirm that judgements of overall seat discomfort can be affected by both the static and dynamic characteristics of a seat, with the effect depending on vibration magnitude: when vibration magnitude was low, discomfort was dominated by static seat factors; as the vibration magnitude increased, discomfort became dominated by dynamic factors.  相似文献   

10.
《Ergonomics》2012,55(8):615-625
An experiment was performed to investigate the effects of vibration level, frequency and foot position on the discomfort of seated persons subjected to sinusoidal vibration in roll and pitch axes. Using the method of category production eight seated subjects adjusted roll and pitch vibrations lo levels described as ‘uncomfortable’ on a given semantic scale. The axes of rotation were located on the same horizontal plane as the ischial tuberosities of the subjects. In each axis subjects assessed the discomfort of six frequencies (1-6, 20, 40. 80, 160, 31-5 Hz) for each of four different heights of a stationary foot-rest and a condition where no foot-rest was used.

For all conditions where a foot-rest was present rotational vibration in roll produced greater discomfort than the same level of rotational vibration in pitch. Sensitivity to relational acceleration decreased with increasing frequency in both roll and pitch axes for all foot positions. Subjects became less sensitive lo rotational vibration in roll and especially pitch as foot height was raised. This was attributed lo the decreased contact between the rotating seal and the thighs at higher foot positions.  相似文献   

11.
The frequency content of a mechanical shock is not confined to its fundamental frequency, so it was hypothesised that the frequency-dependence of discomfort caused by shocks with defined fundamental frequencies will differ from the frequency-dependence of sinusoidal vibration. Subjects experienced vertical vibration and vertical shocks with fundamental frequencies from 0.5 to 16 Hz and magnitudes from ±0.7 to ±9.5 ms–2. The rate of growth of discomfort with increasing magnitude of motion decreased with increasing frequency of both motions, so the frequency-dependence of discomfort varied with the magnitudes of both motions and no single frequency weighting will be ideal for all magnitudes. At the frequencies of sinusoidal vibration producing greatest discomfort (4–16 Hz), shocks produced less discomfort than vibration with same peak acceleration or unweighted vibration dose value. Frequency-weighted vibration dose values provided the best predictions of the discomfort caused by different frequencies and magnitudes of vibration and shock.

Practitioner Summary: Human responses to vibration and shock vary according to the frequency content of the motion. The ideal frequency weighting depends on the magnitude of the motion. Standardised frequency-weighted vibration dose values estimate discomfort caused by vibration and shock but for motions containing very low frequencies the filtering is not optimum.  相似文献   


12.
《Ergonomics》2012,55(7):603-630
A series of studies of discomfort caused by multi-axis vibration at the seat, feet and back of seated persons is described. This first paper reports on studies with translational seat vibration. Two experiments concerned with the effects of level, frequency and direction of the translational vibration of a firm flat seat are reported.

At octave centre frequencies from 1 to 63 Hz the first experiment determined the levels of fore-and-aft, lateral and vertical seat vibration which caused discomfort equivalent to 0.5 and l.25m/s2r.m.s. 10 Hz vertical seat vibration. In the second experiment, comfort contours equivalent to 0.8m/s2r.m.s. 10 Hz vertical seat vibration and subject transmissibilities were determined from 18 males and 18 females at preferred third-octave centre frequencies from 1 to 100 Hz. In both studies the feet of subjects were not vibrated and there was no backrest.

It was concluded that the shapes of equivalent comfort contours need not normally depend on vibration level. The forms of both individual and group equivalent comfort contours and seat-to-head transmissibilities are presented. Significant correlations were found between subject characteristics (size and transmissibility) and subject relative discomfort. The males and females produced similar equivalent comfort contours.

Information on the computerized application of the method of constant stimuli which was developed for the series of experiments is presented together with a consideration of alternative methods of determining the central tendency of the data. A method of assessing the effect of vibrator distortion on judgements of equivalent discomfort is also defined.  相似文献   

13.
The aims of this study were to propose multiply scale factors for evaluation of discomfort of standing persons and to investigate whether there exist differences between multiplying factors used for evaluation of discomfort of standing persons and those of seated persons exposed to WBV. Twelve male subjects were exposed to twenty-seven stimuli that comprise three acceleration magnitudes (0.2, 0.4, and 0.8 m/s2 r.m.s.) along fore-aft (x), lateral (y) or vertical (z) direction. The subjects with seated or standing posture on the platform of the vibration test rig rated the subjective discomfort for each stimulus that has frequency contents ranging from 1.0 Hz to 20 Hz with a constant power spectrum density. The order of presentation of the test stimuli was fully randomized and each stimulus was repeated three times. The subjective scale for discomfort was calculated by using the category judgment method. The best combinations of multiplying factors were determined by calculating correlation coefficients of regression curves in-between subjective ratings and vibration magnitudes. In all the directions, body posture significantly influenced on subjective discomfort scales. Particularly in the fore-aft and lateral direction, the upper limit of all the categories for the standing posture resulted in higher vibration acceleration magnitudes than those for the seated posture. In contrast, in the vertical direction, only the upper limit of category “1: Not uncomfortable” for standing posture was observed to be higher than that for seated posture. The best agreement for ISO-weighted vibration acceleration occurred at x factor of 1.8 and y factor of 1.8 in the standing posture and x factor of 2.8 and y factor of 1.8 in the seated posture. The results suggest that seated people respond more sensitively and severely in perception of discomfort to fore-aft and lateral vibration than standing people do while standing people respond more sensitively and severely to vertical vibration than seated people do. Thus the effects of body postures on multiplying factors should be considered in evaluation of discomfort caused by whole-body vibration.Relevance to industryThis study reports differences in subjective response of standing persons to fore-aft, lateral and vertical whole-body vibration. The results obtained in this study propose the fundamental data on the sensitivity to whole-body vibration exposed with standing posture.  相似文献   

14.
《Ergonomics》2012,55(3):347-351
Abstract

The frequency dependence of discomfort caused by vertical mechanical shocks has been investigated with 20 seated males exposed to upward and downward shocks at 13 fundamental frequencies (1–16 Hz) and 18 magnitudes (±0.12 to ±8.3 ms?2). The rate of growth of discomfort with increasing shock magnitude depended on the fundamental frequency of the shocks, so the frequency dependence of equivalent comfort contours (for both vertical acceleration and vertical force measured at the seat) varied with shock magnitude. The rate of growth of discomfort was similar for acceleration and force, upward and downward shocks, and lower and higher magnitude shocks. The frequency dependence of discomfort from shocks differs from that of sinusoidal vibrations having the same fundamental frequencies. This arises in part from the frequency content of the shock. Frequency weighting Wb in BS 6841:1987 and ISO 2631-1:1997 provided reasonable estimates of the discomfort caused by the shocks investigated in this study.

Practitioner Summary: No single frequency weighting can accurately predict the discomfort caused by mechanical shocks over wide ranges of shock magnitude, but vibration dose values with frequency weighting Wb provide reasonable estimates of discomfort caused by shocks similar to those investigated in this study with peak accelerations well below 1 g.  相似文献   

15.
Subjective response to seated, fore-and-aft direction, whole-body vibration of the type experienced in automobiles was investigated. Fore-and-aft acceleration was measured at the seat guide of a small automobile when driving over two representative road surfaces, and was replicated in a laboratory setting using a whole-body vibration test rig and rigid seat. A single 15 s section of each of the two acceleration time histories was band-pass filtered to the frequency interval from 0.5 to 50.5 Hz, and was used as a base stimulus. Thirteen test stimuli were then constructed for each base stimulus by rescaling to BS 6841 Wd frequency-weighted r.m.s. amplitudes from 0.01 to 0.86 m/s2. Two groups of 16 participants (8 male and 8 female in each case) rated the discomfort of the test stimuli. The first group was asked to use the psychophysical method of magnitude estimation while the second used a Borg CR-10 scale. The order of presentation of the test stimuli was fully randomised and each was repeated three times. For each group of participants, regression analysis was used to determine both the individual and the group mean Stevens’ Power Law exponent describing the relationship between stimulus amplitude and subjective response. All mean power exponents were found to be less than unity, with the CR-10 scale having produced smaller exponents than magnitude estimation. The power exponents ranged from 0.66 to 0.91, corroborating the value of 0.84 obtainable from the guidelines of standard BS 6841.The results suggest that the numerical response scale provided in the BS 6841 guidelines is appropriate for use in the case of automobile fore-and-aft vibration, but that the semantic labels under-represent the actual human subjective response in this direction. Psychophysical test method, vibration stimulus range and test participant gender were all found to affect the Stevens’ Power Law exponent achieved from subjective testing. Each factor may therefore require control when attempting to compare human responses to vibration originating from different automobiles.  相似文献   

16.
《Ergonomics》2012,55(4):613-626
Two experiments have examined the effects of whole-body vibration on visual performance. The first experiment concerned alphanumeric reading performance and contrast thresholds for gratings subtending 7-5, 10 and 12-5 cycles per degree (c deg)?1. Seated subjects were exposed to vertical sinusoidal whole-body vibration (4 Hz, 2-5 ms?2 r.m.s.). Greatest reading errors occurred with characters exhibiting a high spatial complexity in their vertical axis. Reductions in contrast sensitivity due to vibration increased with increasing spatial frequency, the greatest loss occurring with horizontally orientated gratings.

In the second experiment, contrast thresholds for horizontally orientated gratings subtending 1-5 and 12-5cdeg?1 were obtained from ten subjects at five-minute intervals during a 60-minute whole-body vibration exposure (20 Hz I -7 m s ?2 r.m.s.), a 20-minute pre-exposure and a 60-minute post-exposure period. There were no significant changes in contrast thresholds for gratings subtending 1-5cdegminus;1 during or after vibration exposure. A large variation was found in the effect of vibration upon performance with the higher spatial frequency grating both during and after vibration exposure. Significant correlations between vertical head motion and contrast sensitivity were obtained with five of the ten subjects, suggesting that time-dependent changes in seat-to-head transmissibility were partly responsible for the results. Other time-dependent changes were found with the high spatial frequency grating. Possible explanations are discussed.  相似文献   

17.
《Ergonomics》2012,55(6):791-806
Static seat characteristics (seat stiffness) and dynamic seat characteristics (vibration magnitude) can both influence judgements of seat comfort. It is proposed that seat comfort can be predicted on the basis of Steven's psychophysical law: ψ = k?n , where ψ is a sensation magnitude, ? is the stimulus magnitude and k is a constant. The law is modified to: ψ = a + b?ns s + c?nv v, where ? s ? v represent seat stiffness and vibration magnitude, n s and n v are exponents determined by the rate of increase in discomfort associated with the stiffness and vibration magnitude, and a, b and c are constants. The stiffness of foam loaded to 490 N may indicate static seat comfort, while the vibration dose value (VDV) on the seat surface may indicate vibration discomfort. Two experiments with 20 subjects investigated this approach. The first experiment with five magnitudes of vibration, three foams and a rigid wooden flat seat yielded 0.929 for the exponent, n v, for VDV. In the second experiment subjects judged the overall seat discomfort while exposed six vibration magnitudes with the same four seating conditions. This experiment yielded 1.18 for the exponent, n s, for seat stiffness. The overall prediction of seat discomfort was given by: ψ = -50.3+ 2.68 ? s 1.18+ 101 ? v 0.929. The prediction equation provided more accurate estimates of subject discomfort than models using either the VDV alone or the stiffness alone, especially when the vibration magnitude was low or the seats were similar. An interaction variable between the VDV and the stiffness slightly improved the prediction. The equivalence of the two stimuli was given by log10 (stiffness) = 0.787 log10 (VDV)+ 1.34, or log10 (VDV) = 1.27 log10 (stiffness)? 1.70.  相似文献   

18.
《Ergonomics》2012,55(8):705-719
The effects on discomfort of the frequency and direction of the translational vibration of a footrest and flat firm backrest have been studied in two experiments. At frequencies in the range 2.5-63 Hz, the first experiment determined the levels of fore-and-aft, lateral and vertical vibration of the feet of seated subjects which caused them discomfort equivalent to that from 0.8 m/s2 r.m.s. 10 Hz vertical vibration of a firm flat seat. The levels of fore-and-aft, lateral and vertical vibration at the back of a seat which were equivalent to 0.8 m/s2 r.m.s. 10 Hz vertical seat vibration were determined in the second experiment. The vibration of the feet or back occurred without simultaneous vibration at the seat.

Individual and group equivalent comfort contours are presented. It is concluded that the data provide a useful initial indication of the relative contribution of foot and back vibration to discomfort. Equivalent comfort contours for foot vibration were similar for all three directions of vibration. The contours for vibration of the back show a high sensitivity to fore-and-aft vibration. The results obtained from two additional studies show that vibration from a backrest and other variations in seating conditions can influence subject comfort.  相似文献   

19.
Few studies have compared the discomfort caused by vibration in different directions, and few have investigated the vibration discomfort of standing people. This study was designed to compare the discomfort experienced by standing people exposed to sinusoidal vibration in the fore-and-aft, lateral, and vertical directions. Using the method of magnitude estimation, 12 subjects estimated the discomfort caused by 4-Hz sinusoidal vibration at 10 different magnitudes. At 4 Hz, subjects were less sensitive to lateral vibration than to fore-and-aft vibration (Ky/Kx = 0.71), and more sensitive to vertical vibration than to horizontal vibration (Kz/Kx = 1.95; Kz/Ky = 2.77). Previous findings showing how the discomfort of standing people depends on the frequency of fore-and-aft, lateral, and vertical vibration were used to define frequency weightings that reflect relative sensitivity to vibration in each direction. The frequency weightings differ from those appropriate for seated people, and differ from the weightings for standing people in current standards that were mostly derived from understanding of the discomfort of seated people.  相似文献   

20.
Laboratory studies have shown that exposure to whole-body vibration (WBV) increases physical and mental fatigue, which are common issues professional drivers face. The objective of this study was to determine whether altering WBV exposures had any effect on driver vigilance and discomfort. A repeated measures crossover design of five truck drivers with regular 10-h routes was used. Active and passive suspension truck seats were evaluated. For each seat, WBV exposures were measured. Participants completed a discomfort questionnaire and a reaction time task before and after their shift for two weeks, one week per seat. Compared with the passive seat, the active seat significantly reduced WBV exposures, decrements in the optimal and mean reaction times (p = 0.02, 0.047, respectively), and discomfort in the lower back and wrist(s)/forearm(s) (p < 0.01, 0.01, respectively). Study results indicated that reducing WBV helps reduce discomfort and maintain vigilance, which may improve drivers’ health and reduce the risk of truck collisions.

Practitioner Summary: The active suspension seat used in this study reduced truck drivers’ exposure to whole-body vibration (WBV) by over 33% in relation to their current industry standard passive suspension seat. This study demonstrated that reducing truck drivers’ exposure to WBV reduced fatigue and discomfort development over a workday.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号