首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ergonomics》2012,55(5):926-939
Abstract

The purpose of this study was to investigate the significance of work level and sweat production for the total amount accumulated and the location of the sweat in a three-layer ensemble as a function of material and textile construction. Furthermore, it was also an aim to investigate how this influenced thermoregulatory responses and thermal comfort during work and during a rest period. Long-legged/long-sleeved underwear manufactured from two different 100% fibre-type materials, polypropylene and wool, was tested as part of a three-layer clothing system. The underwear manufactured from 100% polypropylene was tested in two different knit constructions, a 1 -by-1 rib knit and a fishnet structure, and the woollen underwear in a 1 -by-1 rib knit construction. The test was performed on eight male subjects (Ta= I0°C, RH = 85%, Va <0-lm/s), and comprised a twice-repeated bout of 40-min cycle exercise followed by 20 min rest. Each subject conducted two tests with the work level approximating 30% [Vdot]o2 max and 40% [Vdot]o2 max, respectively. Skin temperatures, rectal temperature, weight loss and humidity near the skin were recorded during the test. Total changes in body and clothing weight were measured separately. Furthermore, subjective ratings on thermal comfort and on sensation of temperature and humidity were collected. The results demonstrated that high heat and sweat production during work periods, leading to increased sweat accumulation, will give higher thermal discomfort ratings for rest periods as well as for work periods compared to intermittent work with lower work intensities. Distribution of accumulated sweat in the clothing ensemble after heavy sweating is dependent on the fibre type in the underwear. Further, it can be concluded that underwear construction clearly has an influence on the evaporation rate in a three-layer ensemble during work at a high activity level.  相似文献   

2.
The aim of this study was to design new functional work clothing for meat-cutters, paying particular attention to the metabolic requirements of the work and the thermal and general working conditions in slaughterhouses. On the basis of the results of the pilot study (review of the literature, questionnaires and interviews, work analysis, physiological measurements) different types of work clothing were designed for prolonged used during normal work in meat cutting. Physical material tests and measurements of thermal insulation values (l(cl)), and the follow-up of clothing maintenance were carried out. Further modifications and evaluations of work clothing were based on the opinions of meat-cutters and on the physiological trials in slaughterhouses. The final assembly of work clothing consists of three pieces (cotton/polyester): an apron, trousers with extra insulation in the lower back, and a work coat with extra insulation in the neck and shoulders, and at the wrists. The sleeves are protected against moisture by special textile material. The thermal insulation of this new set of work clothing together with long sleeved and legged underwear is 1.3 clo and it proved to be sufficient for thermal comfort in moderate work in an air temperature of 10 degrees C.  相似文献   

3.
The purpose of this study was to determine the variation of localized skin temperatures, clothing surface temperatures and water vapour pressures within a clothing system when worn during alternating work/rest cycles in a cold environment. A two-layer prototype clothing system comprising underwear and a uniform was studied on eight subjects (Ta = Tr = 5 degrees C; Tdp = -3.5 degrees C; va = 0.32 m s-1; Itot = 0.24 m2 K W-1). The 2 h experiment comprised a twice-repeated bout of 40 min cycle exercise (W = 56 W m-2; M = 313 W m-2) followed by 20 min of rest (M = 62 W m-2). Esophageal, skin, clothing, and ambient temperatures, as well as dew-point temperatures near the skin, in the clothing and in the environment were monitored. In addition, evaporation of sweat and sweat accumulated in the clothing were determined. The temperatures and water vapour pressures in all clothing layers varied significantly with the human thermoregulatory responses (skin temperature, sweating) to alternating work/rest cycles. Different courses of localized corresponding temperatures and water vapour pressures indicated that various forms of heat transport and heat exchange in the skin-clothing-environment system are of significance in different body areas.  相似文献   

4.
The purpose of the study was to compare body temperature responses from subjects who exercised while wearing firefighter clothing to predictive data from a real-time thermoregulatory model that had been initially developed and validated for use in the military. Data from two firefighter studies, firefighter study 1 (FFS1: 7 males and 3 females, continuous treadmill exercise at 50% VO2max, 25 °C, 50% RH) and firefighter study 2 (FFS2: 6 males, intermittent treadmill exercise at 75% VO2max, 35 °C, 50% RH), were utilized for the thermoregulatory modeling and comparison. The results showed that prediction error (RMSD) of the model for core and skin temperatures was 0.33 and 0.65 °C in FFS1 and 0.39 and 0.86 °C in FFS2, respectively. While the real-time thermoregulatory model tested in the present study showed the potential for providing a means for reasonably accurate prediction of body temperature responses in firefighters, further development on the model's metabolism algorithms to include adjustments for protective clothing, options to facilitate external work, inclusions of cooling effects are suggested.Relevance to industryFirefighters exposed to thermal extremes experience physiological strain, but direct monitoring of physiological variables is not always practical. Thermoregulatory models can simulate the thermal responses reasonably accurately by applying known thermo-physiological mechanisms together with heat loss mechanisms related to clothing and environment in an effort to improve firefighter safety.  相似文献   

5.
This study reports on an experimental investigation of physical properties on the textile thermal comfort. Textile properties, such as thickness, relative porosity, air permeability, moisture regain, thermal conductivity, drying time and water-vapour transmission rate have been considered and correlated to the thermal and vapour resistance, permeability index, thermal effusivity and moisture management capability in order to determine the overall comfort performance of underwear fabrics. The results suggested that the fibre type, together with moisture regain and knitted structure characteristics appeared to affect some comfort-related properties of the fabrics. Additionally, thermal sensations, temperature and skin wetness predicted by Caseto® software for three distinct activity levels were investigated. Results show that the data obtained from this model in transient state are correlated to the thermal conductivity for the temperature and to Ret, moisture regain and drying time for the skin wetness. This provides potential information to determine the end uses of these fabrics according to the selected activity level.  相似文献   

6.
《Ergonomics》2012,55(3):234-248
A study has been carried out to investigate the psychophysical mechanisms of the perception of temperature and moisture sensations in clothing during environmental transients. A series of wear trials was conducted to measure the psychological perception of thermal and moisture sensations and the simultaneous temperature and humidity at the skin surface, fabric surface and in the clothing under simulated moderate rain conditions. Jumpers made from wool and acrylic fibres were used in the trial. Analysis has been carried out to study the relationship between psychological perceptions of temperature and moisture and the objectively measured skin and fabric temperatures and relative humidity in clothing microclimate. The perception of warmth seems to follow Fechner's law and Stevens' power law, having positive relationships with the skin temperature and fabric temperatures. The perception of dampness appears to follow Fechner's law more closely than Stevens' power law with a negative relationship with skin temperature, and is nonlinearly and positively correlated with relative humidity in clothing microclimate. The perception of comfort is positively related to the perception of warmth and negatively to the perception of dampness. This perception of comfort is positively related to the skin temperature, which appears to follow both Fechner's law and Stevens' law, also non-linearly and negatively related to relative humidity in clothing microclimate.  相似文献   

7.
Measurement of the clothing ventilation index   总被引:1,自引:0,他引:1  
In order to achieve thermal comfort while wearing protective clothing, heat loss from the body by convection and by the evaporation of sweat must be readily controlled by the wearer's thermoregulatory system. This can only be achieved if air is flowing through the clothing micro-environment in sufficient quantity to remove sensible and insensible heat as required. The volume flow of air through the clothing assembly is therefore an important determinant of thermal comfort.

This paper describes a new procedure for estimating under working conditions, the volume of air flowing through the micro-environment. The method is based on two techniques: the first gives a measure of the volume of the micro-environment; the other uses a trace gas to measure the rate of air exchange. Algebraic combination of the results enables the air exchange characteristics of a garment to be described in terms of a Ventilation Index. It is proposed that this index be used to describe the performance of protective clothing assemblies.  相似文献   


8.
9.
Li Y 《Ergonomics》2005,48(3):234-248
A study has been carried out to investigate the psychophysical mechanisms of the perception of temperature and moisture sensations in clothing during environmental transients. A series of wear trials was conducted to measure the psychological perception of thermal and moisture sensations and the simultaneous temperature and humidity at the skin surface, fabric surface and in the clothing under simulated moderate rain conditions. Jumpers made from wool and acrylic fibres were used in the trial. Analysis has been carried out to study the relationship between psychological perceptions of temperature and moisture and the objectively measured skin and fabric temperatures and relative humidity in clothing microclimate. The perception of warmth seems to follow Fechner's law and Stevens' power law, having positive relationships with the skin temperature and fabric temperatures. The perception of dampness appears to follow Fechner's law more closely than Stevens' power law with a negative relationship with skin temperature, and is nonlinearly and positively correlated with relative humidity in clothing microclimate. The perception of comfort is positively related to the perception of warmth and negatively to the perception of dampness. This perception of comfort is positively related to the skin temperature, which appears to follow both Fechner's law and Stevens' law, also non-linearly and negatively related to relative humidity in clothing microclimate.  相似文献   

10.
Ten men (non-firefighters) completed a 110 min walking/recovery protocol (three 20-min exercise bouts, with recovery periods of 10, 20, and 20 min following successive bouts) in a thermoneutral laboratory while wearing firefighting personal protective equipment over one of four base layers: cotton, modacrylic, wool, and phase change material. There were no significant differences in changes in heart rate, core temperature, rating of perceived exertion, thermal discomfort, and thermal strain among base layers. Sticking to skin, coolness/hotness, and clothing humidity sensation were more favorable (p < 0.05) for wool compared with cotton; no significant differences were identified for the other 7 clothing sensations assessed. Separate materials performance testing of the individual base layers and firefighting ensembles (base layer + turnout gear) indicated differences in thermal protective performance and total heat loss among the base layers and among ensembles; however, differences in heat dissipation did not correspond with physiological responses during exercise or recovery.  相似文献   

11.
Thirty-nine males and 18 females, in six groups, participated in six high altitude treks (each lasting 3–4 weeks and climbing up to 5500 m) in the Himalaya and Karakoram. Inverse relationships between mean overnight total insulation (sleeping bag plus clothing) and air temperature in tents were recorded for all treks. Average overnight thermal sensations varied little with air temperature as the subjects modified their clothing insulation to maintain thermal sensations warmer than ‘neutral’ for all treks. For combined treks, subjects adjusted their mean overnight total insulation up to 7 clo for thermal sensations of between 0 (‘neutral’) and +1 (‘slightly warm’) on average, measured on the standard seven-point thermal sensation scale developed for everyday low-altitude conditions. Very few subjects (3% of all daily responses, on average) reported ‘cool’ or ‘cold’ sensations. General tent discomfort increased with altitude suggesting that subjects interpreted tent comfort predominantly in terms of thermal outdoor conditions.  相似文献   

12.
Heat stress can be a significant problem for pilots wearing protective clothing during flights, because they provide extra insulation which prevents evaporative heat loss. Heat stress can influence human cognitive activity, which might be critical in the flying situation, requiring efficient and error-free performance. This study investigated the effect of wearing protective clothing under various ambient conditions on physiological and cognitive performance. On several occasions, eight subjects were exposed for 3 h to three different environmental conditions; 0 degrees C at 80% RH, 23 degrees C at 63% RH and 40 degrees C at 19% RH. The subjects were equipped with thermistors, dressed as they normally do for flights (including helmet, two layers of underwear and an uninsulated survival suit). During three separate exposures the subjects carried out two cognitive performance tests (Vigilance test and DG test). Performance was scored as correct, incorrect, missed reaction and reaction time. Skin temperature, deep body temperature, heart rate, oxygen consumption, temperature and humidity inside the clothing, sweat loss, subjective sensation of temperature and thermal comfort were measured. Rises in rectal temperature, skin temperature, heart rate and body water loss indicated a high level of heat stress in the 40 degrees C ambient temperature condition in comparison with 0 degrees C and 23 degrees C. Performance of the DG test was unaffected by ambient temperature. However, the number of incorrect reactions in the Vigilance test was significantly higher at 40 degrees C than at 23 degrees C (p = 0.006) or 0 degrees C (p = 0.03). The effect on Vigilance performance correlated with changes in deep-body temperature, and this is in accordance with earlier studies that have demonstrated that cognitive performance is virtually unaffected unless environmental conditions are sufficient to change deep body temperature.  相似文献   

13.
Combinations of clothing provide different degrees of thermal insulation for various parts of the body. The effect of this uneven thermal insulation on general comfort is examined by using experimental clothing which could provide varying degrees of thermal resistance. The relationship between skin temperature and sensation was found to be approximately linear when the exposed areas were not large, and that clothing of the same thermal resistance can yield different sensations depending on the parts of the body involved.  相似文献   

14.
《Ergonomics》2012,55(8):780-799
Heat stress can be a significant problem for pilots wearing protective clothing during flights, because they provide extra insulation which prevents evaporative heat loss. Heat stress can influence human cognitive activity, which might be critical in the flying situation, requiring efficient and error-free performance. This study investigated the effect of wearing protective clothing under various ambient conditions on physiological and cognitive performance. On several occasions, eight subjects were exposed for 3 h to three different environmental conditions; 0°C at 80% RH, 23°C at 63% RH and 40°C at 19% RH. The subjects were equipped with thermistors, dressed as they normally do for flights (including helmet, two layers of underwear and an uninsulated survival suit). During three separate exposures the subjects carried out two cognitive performance tests (Vigilance test and DG test). Performance was scored as correct, incorrect, missed reaction and reaction time. Skin temperature, deep body temperature, heart rate, oxygen consumption, temperature and humidity inside the clothing, sweat loss, subjective sensation of temperature and thermal comfort were measured. Rises in rectal temperature, skin temperature, heart rate and body water loss indicated a high level of heat stress in the 40°C ambient temperature condition in comparison with 0°C and 23°C. Performance of the DG test was unaffected by ambient temperature. However, the number of incorrect reactions in the Vigilance test was significantly higher at 40°C than at 23°C (p = 0.006) or 0°C (p = 0.03). The effect on Vigilance performance correlated with changes in deep-body temperature, and this is in accordance with earlier studies that have demonstrated that cognitive performance is virtually unaffected unless environmental conditions are sufficient to change deep body temperature.  相似文献   

15.
In practice, passengers actively respond to the thermal environment when they board an aircraft in winter, which is not considered in the current standards. In this study, the behavioural, physiological and psychological responses to the thermal environment were examined at 22 °C (with 68 subjects), 20 °C and 26 °C (with 32 subjects). The results showed that the three air temperature levels had significant effect on nozzle usage and clothing adjustment behaviours, surface skin temperature, and thermal sensation vote (TSV). The walking/waiting states prior to boarding the aircraft cabin had a significant effect on the proportion of jacket removal, TSV and thermal comfort vote. After 10 min in the aircraft cabin, the subjects maintained their comfort in a wider range of the thermal environment when the behavioural adjustments existed compared to when they did not. Thus, a suggestion was made for behavioural adjustments to be provided in aircraft cabins.

Practitioner Summary: Experimental investigation of human responses was conducted in an aircraft cabin. Analysis showed that the subjects maintained their comfort in a wider range of the thermal environment when the behavioural adjustments existed compared to when they did not. Thus, a suggestion was made for behavioural adjustments to be provided in aircraft cabins.  相似文献   


16.
《Ergonomics》2012,55(12):1635-1645
Abstract

Working in Chemical Biological (CB) protective equipment causes thermoregulatory strain by restricting evaporative cooling. We quantified which impermeable ancillary items [gloves(G), body armour liner(BAL), respirator(R) and overboots(OB)] imposed the greatest and the least thermoregulatory strain through restricting evaporative cooling. The study was a five-condition repeated-measures design with male volunteers (n?=?13) who stepped intermittently with recovery periods in a desert-like environment (40.5?°C, 20% rh). Conditions varied in the ensemble worn, with a matched weight secured to the area when an item was not worn: CON(CB suit plus all items), NR(no R), NBAL(no BAL [170g liner]), NG(no G) and NOB(no OB). The greatest reduction in thermoregulatory strain compared with CON occurred in NG when the rise of rectal temperature was attenuated by 0.37?°C.hr?1 (p?<?.001), extending tolerance time by 21.3% (p?<?.05) and improving perceived thermal comfort. The least improvement occurred for NOB. It is recommended that the G permeability be examined further.

Practitioner summary: Thermoregulatory strain was quantified when wearing impermeable protective equipment. The thermal burden of intermittent exercise in desert-like environments was best alleviated by removing gloves compared to removing a respirator, overboots or body armour liner. Reducing the evaporative resistance of materials used for such kit, particularly gloves, should be investigated.  相似文献   

17.
In this study, three methods were used to determine the thermal insulation values of different school clothing worn by 6 to 17 year old girls and boys in Kuwait classrooms for both summer and winter seasons. The different clothing ensembles' insulations were determined by 1: measurement using adult-sized versions of the clothing on thermal manikins, 2: estimations from adult clothing data obtained from the standards tables in ISO 9920 and ASHRAE 55, and 3: calculations using a regression equation from McCullough et al. (1985) that was adapted to accommodate children's sizes for ages 6-17 years. Values for the clothing area factor, f(cl), were also determined by measurement and by using a prediction equation from ISO 9920. Results in this study suggested that the clothing insulation values found from the measured and adapted data were similar to the adult's data in standards tables for the same summer and winter seasons. Further, the effect of the insulation values on the different scholars' age groups were investigated using the clothing temperature rating technique and compared to the scholars' comfort temperature found in recent field studies. Results showed that the temperature ratings of the clothing using the three methods described above are close and in agreement with the scholars' comfort temperature. Though estimated and measured f(cl) data differed, the impact on the temperature ratings was limited. An observed secular change in the children's heights and weights in the last few decades implies that, for adolescents, the children's body surface areas are similar to those of adults, making the use of adult clothing tables even more acceptable. In conclusion, this study gives some evidence to support the applicability of using adults' data in ASHRAE 55 and ISO 9920 standards to assess the thermal insulation values of different children's clothing ensembles, provided that careful selection of the garments, ensembles material and design takes place.  相似文献   

18.
Evaporative resistance is an important parameter to characterise clothing thermal comfort. However, previous work has focused mainly on either total static or dynamic evaporative resistance. There is a lack of investigation of localised clothing evaporative resistance. The objective of this study was to study localised evaporative resistance using sweating thermal manikins. The individual and interaction effects of air and body movements on localised resultant evaporative resistance were examined in a strict protocol. The boundary air layer's localised evaporative resistance was investigated on nude sweating manikins at three different air velocity levels (0.18, 0.48 and 0.78 m/s) and three different walking speeds (0, 0.96 and 1.17 m/s). Similarly, localised clothing evaporative resistance was measured on sweating manikins at three different air velocities (0.13, 0.48 and 0.70 m/s) and three walking speeds (0, 0.96 and 1.17 m/s). Results showed that the wind speed has distinct effects on local body segments. In contrast, walking speed brought much more effect on the limbs, such as thigh and forearm, than on body torso, such as back and waist. In addition, the combined effect of body and air movement on localised evaporative resistance demonstrated that the walking effect has more influence on the extremities than on the torso. Therefore, localised evaporative resistance values should be provided when reporting test results in order to clearly describe clothing local moisture transfer characteristics. PRACTITIONER SUMMARY: Localised boundary air layer and clothing evaporative resistances are essential data for clothing design and assessment of thermal comfort. A comprehensive understanding of the effects of air and body movement on localised evaporative resistance is also necessary by both textile and apparel researchers and industry.  相似文献   

19.
《Ergonomics》2012,55(4):492-510
The performance of garments for outdoor activity was compared. Three fabrics, each in garments for the upper body, matched garment/wearer dimensions, were worn by 10 athletically ‘well-trained’ males under controlled conditions (hot 32 ± 2°C, 20 ± 2% relative humidity (RH); cold 8 ± 2°C, 40 ± 2% RH) with physical (instrumental) and sensory responses obtained during the trials. Differences in human responses to the fabrics/garments included heart rate, core temperature during run (hot, cold), rest (hot) and walk (cold), heat content of the body, humidity under garments during rest and run and time to onset of sweating. No such differences were identified for change in body mass, core temperature during walk (hot) and rest (cold), skin temperature, temperature of skin covered by the garment, humidity under the garments during walk or for any perceptions (thermal sensations, thermal comfort of torso, exertion, wetness). The garment in single jersey wool fabric performed best in both hot and cold conditions. Effects of garments on wearers are often related to properties of the fabrics from which the garments are made. This study shows that only some differences in fabric properties result in measurable thermophysiological and perceptual responses of the garment wearers and underlines the difficulty in predicting performance of garments/persons from laboratory tests on fabrics.  相似文献   

20.
Infrared-reflective (IRR) treatment of automotive glass has been shown to reduce air temperature in vehicle cabins, thereby increasing fuel economy and occupant comfort. Its effect on radiant heat, however, may augment these benefits. In this study, the hypothesis that radiant heat affects subjective comfort ratings in a vehicle was tested. IRR films were systematically applied to the driver-side window of an outdoor stationary vehicle. In Phase 1, cabin air temperature was controlled while participants rated their thermal comfort. In Phase 2, air temperature was adjusted according to participants' responses. Results in Phase 1 showed that the IRR treatment improved thermal comfort on the left forearm, which was exposed to direct solar irradiance, but not whole-body thermal comfort. In Phase 2, participants indicated that they were comfortable at a higher air temperature (mean of 2.5 degrees F [1.4 degrees C]) with the IRR treatment than in the untreated condition. The results indicate that reducing radiant heat via IRR treatment affects subjective assessments of thermal comfort and allows occupants to maintain the same level of comfort in a warmer vehicle cabin. Applications of this research include future implementations of IRR treatment on automotive glass that may lead to greater fuel economy savings and occupant comfort than have previously been estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号