首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The frequency content of a mechanical shock is not confined to its fundamental frequency, so it was hypothesised that the frequency-dependence of discomfort caused by shocks with defined fundamental frequencies will differ from the frequency-dependence of sinusoidal vibration. Subjects experienced vertical vibration and vertical shocks with fundamental frequencies from 0.5 to 16 Hz and magnitudes from ±0.7 to ±9.5 ms–2. The rate of growth of discomfort with increasing magnitude of motion decreased with increasing frequency of both motions, so the frequency-dependence of discomfort varied with the magnitudes of both motions and no single frequency weighting will be ideal for all magnitudes. At the frequencies of sinusoidal vibration producing greatest discomfort (4–16 Hz), shocks produced less discomfort than vibration with same peak acceleration or unweighted vibration dose value. Frequency-weighted vibration dose values provided the best predictions of the discomfort caused by different frequencies and magnitudes of vibration and shock.

Practitioner Summary: Human responses to vibration and shock vary according to the frequency content of the motion. The ideal frequency weighting depends on the magnitude of the motion. Standardised frequency-weighted vibration dose values estimate discomfort caused by vibration and shock but for motions containing very low frequencies the filtering is not optimum.  相似文献   


2.
《Ergonomics》2012,55(12):1214-1227
This study determined how backrest inclination and the frequency of vibration influence the perception and discomfort of vibration applied parallel to the back (vertical vibration when sitting upright, horizontal vibration when recumbent). Subjects experienced backrest vibration at frequencies in the range 2.5 to 25 Hz at vibration magnitudes up to 24 dB above threshold. Absolute thresholds, equivalent comfort contours, and the principal locations for feeling vibration were determined with four backrest inclinations: 0° (upright), 30°, 60° and 90° (recumbent). With all backrest inclinations, acceleration thresholds and equivalent comfort contours were similar and increased with increasing frequency at 6 dB per octave (i.e. velocity constant). It is concluded that backrest inclination has little effect on the frequency dependence of thresholds and equivalent comfort contours for vibration applied along the back, and that the W d frequency weighting in current standards is appropriate for evaluating z-axis vibration of the back at all backrest inclinations.

Statement of Relevance: To minimise the vibration discomfort of seated people, it is necessary to understand how discomfort varies with backrest inclination. It is concluded that the vibration on backrests can be measured using a pad between the backrest and the back, so that it reclines with the backrest, and the measured vibration evaluated without correcting for the backrest inclination.  相似文献   

3.
Zhen Zhou 《Ergonomics》2014,57(5):714-732
Frequency weightings for predicting vibration discomfort assume the same frequency-dependence at all magnitudes of vibration, whereas biodynamic studies show that the frequency-dependence of the human body depends on the magnitude of vibration. This study investigated how the frequency-dependence of vibration discomfort depends on the acceleration and the force at the subject–seat interface. Using magnitude estimation, 20 males and 20 females judged their discomfort caused by sinusoidal vertical acceleration at 13 frequencies (1–16 Hz) at magnitudes from 0.1 to 4.0 ms? 2 r.m.s. The frequency-dependence of their equivalent comfort contours depended on the magnitude of vibration, but was less dependent on the magnitude of dynamic force than the magnitude of acceleration, consistent with the biodynamic non-linearity of the body causing some of the magnitude-dependence of equivalent comfort contours. There were significant associations between the biodynamic responses and subjective responses at all frequencies in the range 1–16 Hz.

Practitioner Summary: Vertical seat vibration causes discomfort in many forms of transport. This study provides the frequency-dependence of vibration discomfort over a range of vibration magnitudes and shows how the frequency weightings in the current standards can be improved.  相似文献   

4.
Yu Huang  Penglin Zhang 《Ergonomics》2019,62(3):420-430
Current standards assume the same frequency weightings for discomfort at all magnitudes of vibration, whereas biodynamic and psychological studies show that the frequency-dependence of objective and subjective responses of the human body depends on the magnitude of vibration. This study investigated the discomfort of seated human body caused by vertical whole-body vibration over the frequency range 2–100?Hz at relatively high magnitudes from 1.0 to 2.5?ms?2 r.m.s. Twenty-eight subjects (15 males and 13 females) judged the discomfort using the absolute magnitude estimation method. The rate of growth of discomfort with increasing vibration magnitude was highly dependent on the frequency, so the shapes of the equivalent comfort contours depended on the magnitude of vibration and no single frequency weighting would be appropriate for all magnitudes. The equivalent comfort contours indicated that the standards and previous relevant studies underestimated the vibration discomfort at frequencies greater than about 30?Hz.

Practitioner Summary: The discomfort caused by vertical vibration at relatively high frequencies can be severe, particularly at relatively great magnitudes in transport. This study provides the frequency-dependence of vibration discomfort at 2–100?Hz, and shows how the frequency weightings in the current standards can be improved at relatively high frequencies.  相似文献   


5.
Spectral in-water measurements of the downward irradiance, E d and the upward irradiance, E u are sufficient in order to calculate the following spectral quantities: the irradiance ratio R, the two scalar irradiances E o and E od, the two average cosines μ and μ d, the light absorption coefficient a, the backscattering coefficient b b and the vertical attenuation coefficients for the above-mentioned downward and upward irradiances. The algorithms are valid for horizontally stratified and optically deep sea waters.  相似文献   

6.
Jonathan DeShaw 《Ergonomics》2016,59(4):568-581
This work presents a predictive model to evaluate discomfort associated with supine humans during transportation, where whole-body vibration and repeated shock are predominant. The proposed model consists of two parts: (i) static discomfort resulting from body posture, joint limits and ambient discomfort; and (ii) dynamic discomfort resulting from the relative motion between the body segments as a result of transmitted vibration. Twelve supine subjects were exposed to single and 3D random vibrations and 3D shocks mixed with vibrations. The subjects’ reported discomfort and biodynamic response were analysed under different support conditions, including a rigid surface, a stretcher and a stretcher with a spinal backboard. The results demonstrated good correlations between the predictive discomfort and the reported discomfort for the different conditions under consideration, with R2 = 0.69–0.94 for individual subjects and R2 = 0.94 for the group mean. The results also indicated a strong relationship between the head-neck and trunk angular velocities and discomfort during supine transportation.

Practitioner Summary: The quantification of discomfort of supine humans under vibration and shocks by using a predictive model is an important contribution to this field, whereby the efficacy of different transport systems can be compared. The predictive discomfort model can be used as design criteria for ergonomic enhancement in supine transportation of humans.  相似文献   


7.
《Ergonomics》2012,55(11):1800-1812
This experimental study investigated the perception of fore-and-aft whole-body vibration intensity using cross-modality matching (CM) and magnitude estimation (ME) methods. Thirteen subjects were seated on a rigid seat without a backrest and exposed to sinusoidal stimuli from 0.8 to 12.5 Hz and 0.4 to 1.6 ms? 2 r.m.s. The Stevens exponents did not significantly depend on vibration frequency or the measurement method. The ME frequency weightings depended significantly on vibration frequency, but the CM weightings did not. Using the CM and ME weightings would result in higher weighted exposures than those calculated using the ISO (2631-1, 1997) Wd. Compared with ISO Wk, the CM and ME-weighted exposures would be greater at 1.6 Hz and lesser above that frequency. The CM and ME frequency weightings based on the median ratings for the reference vibration condition did not differ significantly. The lack of a method effect for weightings and for Stevens exponents suggests that the findings from the two methods are comparable.  相似文献   

8.
The effect of rainfall inhomogeneity within the sensor field of view (FOV) affects significantly the accuracy of rainfall retrievals causing the so-called beam-filling error. Observational analyses of Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR) data suggest that the beam-filling error can be classified in terms of the mean rain rate and the rainfall inhomogeneity parameter or coefficient of variation (CVR, standard deviation divided by mean). The dependence of the beam-filling error on the rain rate and CVR has been confirmed quantitatively using a single channel at 19.4 GHz. It is also found significantly different beam-filling errors for the two different regions, the East and West Pacific, where the spatial and vertical distributions of rainfalls are different. It is also observed that the vertical distribution of rainfall is related to the spatial variability of rainfall (CVR) and similarly to the spatial variability of TMI 85.5 GHz brightness temperature (CV Tb). Based on these findings, this study exploits the CV Tb to correct the beam-filling error in a direct inversion from a rainfall (R) and brightness temperature (T b) curve at a single frequency, and to reduce the retrieval error in the context of a Bayesian-type inversion method for multi-frequency rainfall retrievals. Both the experiments suggest that the spatial variability of the high-frequency radiometer data appears to contain useful information for retrievals.  相似文献   

9.
This study clarifies the implicit potential deficiency caused by the sparse cardinality parameter k in Rong et al. (2014). In addition, k = β × W × M × N (0.9 ≤ β < 1) is suggested to avert this potential deficiency, where β is a ratio controlling the amount of sparse cardinality, W is the number of multispectral bands and M × N is the size of panchromatic image. With the choice of k suggested in this study, the low rank matrix L and sparse matrix S obtained by Go Decomposition (Zhou and Tao 2011) can be iteratively optimized and solved. Thus, instead of choosing k as W × M × N in Rong et al. (2014), the potential deficiency that L is directly obtained as an analytic solution can be averted.  相似文献   

10.
《Ergonomics》2012,55(10):1647-1659
Few studies have investigated discomfort caused by multi-axis vibration and none has explored methods of predicting the discomfort of standing people from simultaneous fore-and-aft, lateral and vertical vibration of a floor. Using the method of magnitude estimation, 16 subjects estimated their discomfort caused by dual-axis and tri-axial motions (octave-bands centred on either 1 or 4 Hz with various magnitudes in the fore-and-aft, lateral and vertical directions) and the discomfort caused by single-axis motions. The method of predicting discomfort assumed in current standards (square-root of the sums of squares of the three components weighted according to their individual contributions to discomfort) provided reasonable predictions of the discomfort caused by multi-axis vibration. Improved predictions can be obtained for specific stimuli, but no single simple method will provide accurate predictions for all stimuli because the rate of growth of discomfort with increasing magnitude of vibration depends on the frequency and direction of vibration.  相似文献   

11.
Few studies have compared the discomfort caused by vibration in different directions, and few have investigated the vibration discomfort of standing people. This study was designed to compare the discomfort experienced by standing people exposed to sinusoidal vibration in the fore-and-aft, lateral, and vertical directions. Using the method of magnitude estimation, 12 subjects estimated the discomfort caused by 4-Hz sinusoidal vibration at 10 different magnitudes. At 4 Hz, subjects were less sensitive to lateral vibration than to fore-and-aft vibration (Ky/Kx = 0.71), and more sensitive to vertical vibration than to horizontal vibration (Kz/Kx = 1.95; Kz/Ky = 2.77). Previous findings showing how the discomfort of standing people depends on the frequency of fore-and-aft, lateral, and vertical vibration were used to define frequency weightings that reflect relative sensitivity to vibration in each direction. The frequency weightings differ from those appropriate for seated people, and differ from the weightings for standing people in current standards that were mostly derived from understanding of the discomfort of seated people.  相似文献   

12.
Book reviews     
We present a new method to determine the near surface air temperature (Ta ) from satellite observations. The satellite observed parameters of total precipitable water (W), atmospheric boundary layer (~500 m) water vapour (Wb ), and sea surface temperature (SST) are used to derive Ta . A genetic algorithm (GA) is used to find the optimum relation between the input (W, Wb , SST) and output (Ta) parameters. The input data consist of 6 years (1988–1993) of instantaneous as well as monthly averages of W, Wb from the Special Sensor Microwave Imager (SSM/I), and SST data from the Advanced Very High Resolution Radiometer (AVHRR). Ta observations based on Comprehensive Ocean Atmospheric Data Set (COADS) are used to develop and evaluate the new methodology. The global mean root mean square (rms) error for instantaneous Ta estimates is 1.4°C and for monthly averages it decreases to 0.74°C. Slightly higher discrepancies between Ta derived from the new method and in situ data are found over the western boundary currents (such as the Kuroshio and Gulf Stream) during wintertime. These regions are characterized by continental cold air outbreak and seasonal current systems, particularly during wintertime. During these conditions weak coupling between SST and Ta may be one of the reasons for large error over these regions. Our method improves upon the air temperature estimates of earlier studies.  相似文献   

13.
The rapidly changing sea ice regime in the Arctic has necessitated an evaluation of sea ice roughness at smaller scales than those provided by satellites. In this article, we evaluate sub-pixel (<5.4 km) sea ice roughness using AMSR-E brightness temperature (Tb) 89 GHz data and in situ physical roughness data acquired using a helicopter-based laser system in the southern Beaufort Sea during April–June of 2008. The analysis shows a statistically significant correlation (r2 = 0.61, P-value < 0.05, regression line slope = –79.93) of Tb at horizontal polarization (H-pol) decreasing with increasing root mean square (RMS) heights. These results suggest that 89 H-pol is more sensitive (than vertical polarization (V-pol)) to the changes in physical roughness. The temporal evolution in AMSR-E Tb values at 89 H-pol and 89 V-pol shows a decrease from April to June. We conclude that solely the AMSR-E Tb at 5.4 km is insufficient to fully account for the changes occurring in the dielectric properties and surface roughness of sea ice at sub-pixel level of 1–4 km during April–June.  相似文献   

14.
Basri B  Griffin MJ 《Ergonomics》2012,55(8):909-922
This study determined how backrest inclination and the frequency and magnitude of vertical seat vibration influence vibration discomfort. Subjects experienced vertical seat vibration at frequencies in the range 2.5-25 Hz at vibration magnitudes in the range 0.016-2.0 ms(-2) r.m.s. Equivalent comfort contours were determined with five backrest conditions: no backrest, and with a stationary backrest inclined at 0° (upright), 30°, 60° and 90°. Within all conditions, the frequency of greatest sensitivity to acceleration decreased with increasing vibration magnitude. Compared to an upright backrest, around the main resonance of the body, the vibration magnitudes required to cause similar discomfort were 100% greater with 60° and 90° backrest inclinations and 50% greater with a 30° backrest inclination. It is concluded that no single frequency weighting provides an accurate prediction of the discomfort caused by vertical seat vibration at all magnitudes and with all backrest conditions. PRACTITIONER SUMMARY: Vertical seat vibration is a main cause of vibration discomfort for drivers and passengers of road vehicles. A frequency weighting has been standardised for the evaluation of vertical seat vibration when sitting upright but it was not known whether this weighting is suitable for the reclined sitting postures often adopted during travel.  相似文献   

15.
《Ergonomics》2012,55(3):263-276
Abstract

The discomfort produced by multiple frequency whole-body vertical vibration has been studied in three expriments. Subjects were required to adjust the level of a 10 Hz sinusoidal vibration such that it produced a degree of discomfort equivalent to that caused by a variety of multiple frequency stimuli including motions containing predominant beats and up to four sinusoidal components. The levels of the 10 Hz vibration equivalent to the complex motions were always well predicted by the root mean square of the levels of 10 Hz equivalent to the individual sinusoidal components in the complex motion. Tho equivalent discomfort of the multiple frequency motions could therefore be determined by weighting the vibration spectrum with an electronic network having a frequency response given by the manner in which discomfort due to vibration varies with vibration frequency. The possibility of inhibition occurring in the response to multiple frequency motions was investigated and it was concluded that tho complexity inherent in methods based on models of inhibition was unnecessary. The present findings have been compared with the procedures for assessing multiple frequency motions given in the current International Standard on the evaluation of human exposure to whole-body vibration.  相似文献   

16.
《Ergonomics》2012,55(11):1545-1559
Abstract

Standards assume vibration discomfort depends on the frequency and direction of whole-body vibration, with the same weightings for frequency and direction at all magnitudes. This study determined equivalent comfort contours from 1.0 to 10?Hz in each of three directions (fore-and-aft, lateral, vertical) at magnitudes in the range 0.1 to 3.5?ms?2?r.m.s. Twenty-four subjects sat on a rigid flat seat with and without a beanbag, altering the pressure distribution on the seat but not the transmission of vibration. The rate of growth of vibration discomfort with increasing magnitude of vibration differed between the directions of vibration and varied with the frequency of vibration. The frequency-dependence and direction-dependence of discomfort, therefore, depended on the magnitude of vibration. The beanbag did not affect the frequency-dependence or direction-dependence of vibration discomfort. It is concluded that different weightings for the frequency and direction of vibration are required for low and high magnitude vibration.

Practitioner summary: When evaluating whole-body vibration to predict vibration discomfort, the weightings appropriate to different frequencies and different directions of vibration should depend on the magnitude of vibration. This is overlooked in all current methods of evaluating the severity of whole-body vibration.  相似文献   

17.
Recently, some smartphones have introduced index finger interaction functions on the rear surface. The current study investigated the effects of task type, phone width, and hand length on grasp, index finger reach zone, discomfort, and muscle activation during such interaction. We considered five interaction tasks (neutral, comfortable, maximum, vertical, and horizontal strokes), two device widths (60 and 90 mm) and three hand lengths. Horizontal (vertical) strokes deviated from the horizontal axis in the range from ?10.8° to ?13.5° (81.6–88.4°). Maximum strokes appeared to be excessive as these caused 43.8% greater discomfort than did neutral strokes. The 90-mm width also appeared to be excessive as it resulted in 12.3% increased discomfort relative to the 60-mm width. The small-hand group reported 11.9–18.2% higher discomfort ratings, and the percent maximum voluntary exertion of their flexor digitorum superficialis muscle, pertaining to index finger flexion, was also 6.4% higher. These findings should be considered to make smartphone rear interaction more comfortable.

Practitioner Summary: Among neutral, comfortable, maximum, horizontal, and vertical index finger strokes on smartphone rear surfaces, maximum vs. neutral strokes caused 43.8% greater discomfort. Horizontal (vertical) strokes deviated from the horizontal (vertical) axis. Discomfort increased by 12.3% with 90-mm- vs. 60-mm-wide devices. Rear interaction regions of five commercialised smartphones should be lowered 20 to 30 mm for more comfortable rear interaction.  相似文献   


18.
Observational data were taken in the ‘vertical’ structure at 2 Hz from research dropsondes for temperature, wind speed and relative humidity during the ~800 s it takes to reach the surface from the ~13 km altitude of the National Oceanic and Atmospheric Administration (NOAA) Gulfstream 4SP aircraft. The observations were made mainly through the depth of the troposphere above the eastern Pacific Ocean from 15° N to 43° N (dropsondes) and 60° N (aircraft) in 2004. Grand averages of some key figures and of probability distribution functions (PDFs) were formed by compounding the data from the Winter Storms Projects 2004, 2005 and 2006, comprising 246, 324 and 315 (some dropped up to 60° N) useable sondes, respectively. This sizeable data set was used to representatively characterize the statistical fluctuations in the ‘vertical’ structure from 13 km to the surface. The fluctuations are resolved at 5–10 m altitude, so covering up to 3 orders of magnitude of typical tropospheric weighting functions for passive remote sounders. Average ‘vertical’ statistical, multifractal, scaling exponents H, C 1 and α of temperature, wind speed and humidity fluctuations observed at high resolution were computed and are available as potential generators of representative, scale-invariant summaries of the vertical structure of the marine troposphere, for use in design and retrieval of remotely sounded observations.  相似文献   

19.
《Ergonomics》2012,55(7):603-630
A series of studies of discomfort caused by multi-axis vibration at the seat, feet and back of seated persons is described. This first paper reports on studies with translational seat vibration. Two experiments concerned with the effects of level, frequency and direction of the translational vibration of a firm flat seat are reported.

At octave centre frequencies from 1 to 63 Hz the first experiment determined the levels of fore-and-aft, lateral and vertical seat vibration which caused discomfort equivalent to 0.5 and l.25m/s2r.m.s. 10 Hz vertical seat vibration. In the second experiment, comfort contours equivalent to 0.8m/s2r.m.s. 10 Hz vertical seat vibration and subject transmissibilities were determined from 18 males and 18 females at preferred third-octave centre frequencies from 1 to 100 Hz. In both studies the feet of subjects were not vibrated and there was no backrest.

It was concluded that the shapes of equivalent comfort contours need not normally depend on vibration level. The forms of both individual and group equivalent comfort contours and seat-to-head transmissibilities are presented. Significant correlations were found between subject characteristics (size and transmissibility) and subject relative discomfort. The males and females produced similar equivalent comfort contours.

Information on the computerized application of the method of constant stimuli which was developed for the series of experiments is presented together with a consideration of alternative methods of determining the central tendency of the data. A method of assessing the effect of vibrator distortion on judgements of equivalent discomfort is also defined.  相似文献   

20.
Purpose: Identify location and intensity of discomfort experienced by healthy participants wearing cervical orthoses.

Method: Convenience sample of 34 healthy participants wore Stro II, Philadelphia, Headmaster, and AspenVista® cervical orthoses for four-hour periods. Participants reported discomfort level (scale 0–6) and location.

Results: Participants reported mean discomfort for all orthoses over the four-hour test between ‘a little discomfort’ and ‘very uncomfortable’ (mean discomfort score = 1.64, SD = 1.50). Seven participants prematurely stopped tests due to pain and six reported maximum discomfort scores. Significant linear increase in discomfort with duration of wear was found for all orthoses. Significantly less discomfort was reported with Stro II than Headmaster and Philadelphia. Age correlated with greater perceived discomfort. Orthoses differed in the location discomfort was experienced.

Conclusion: Existing cervical orthoses cause discomfort influenced by design and duration of wear with orthoses’ design the more significant factor. This work informed the design of a new orthosis and future orthoses developments.

Practitioner Summary: The purpose of this study was to gain greater knowledge about the discomfort caused by wearing of existing neck orthoses in order to inform the design and development of a new neck orthosis. This study gathers empirical data from a surrogate population and concludes that orthosis design is more influential than the duration of wear.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号