首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Kumar  D Garand 《Ergonomics》1992,35(7-8):861-880
Postural and therefore biomechanical standardization in strength testing has not been rigorously and consistently applied. To develop a quantitative relationship between strength and posture (body position, symmetry, and reach) 30 normal subjects (18 male and 12 females) were required to stoop and squat lift or exert in the relevant posture against a standardized instrumented handle. The isometric lifting efforts and isokinetic lifts were studied. The isokinetic lifts were done at a linear velocity of 50cm/s of the hand displacement from the floor to the knuckle heights of the respective subjects in stoop and squat postures. The isometric stoop lifting efforts were exerted in two standardized postures: (a) with 60 degrees hip flexion; and (b) with 90 degrees hip flexion. The isometric squat lifting efforts were also exerted in two standardized postures: (a) with 90 degrees knee flexion; and (b) with 135 degrees knee flexion. All isometric lifting efforts and isokinetic lifts were performed at half, three-quarters, and full horizontal reach in sagitally symmetrical, 30 degrees left lateral, and 60 degrees left lateral planes. Isometric stoop and squat lifting efforts were also measured in self-selected optimal postures. These 56 conditions were tested in random order. The analysis of variance revealed that the gender, the mode of lifting, the postural asymmetry and reach of lifting affected the strength significantly (p less than 0.0001). Most two-way and three-way interactions were significant (p less than 0.01). Of 108 prediction regression equations, 103 were significant with up to 90% of the variation explained by anthropometric variables and sagittal plane strength. The reach affected the strength most profoundly followed by postural asymmetry and the mode of lifting.  相似文献   

2.
《Ergonomics》2012,55(12):1975-1983
Nine normal male subjects (mean age 28·2 years and mean weight 72·6 kg) performed 20 standardized maximal effort lifting tasks. They were asked to perform stoop and squat lifts at half, three-quarters and full individual horizontal reach distances in mid-sagittal plane in isometric and isokinetic modes (fixed velocity 60 cm/s). Both stoop and squat lifts were initiated at the floor level and terminated at the individual's knuckle height keeping the horizontal distance constant throughout the lift. The isometric stoop lifts were performed with hip at 60° and 90° of flexion with hands at preselected reach distances. The isometric squat lifts were performed with knees at 90° and 135° of flexion with hands at similarly preselected reach distances. The force was measured using a Static Dynamic Strength Tester with load cell (SM1000). The postures were recorded using a two-dimensional Peak Performance System with an event synchronizing unit. The load cell was sampled at 60 Hz and the video filming was done at 60 frames per second. The force and postural data were fed to a biomechanical model (Cheng and Kumar 1991) to extract external moment and lumbosacral compression. The strengths generated in different conditions were significantly different (p < 0·01). The strength variation ranged by up to 73% whereas the lumbosacral compression varied by only up to 15%. A high level of lumbosacral compression was maintained in all conditions.  相似文献   

3.
Kumar S 《Applied ergonomics》1995,26(5):327-341
The purpose of the study was to determine relationship between lifting strengths of male and female subjects and body posture, type of lift (stoop or squat) and velocity of lift. Thirty normal young adults (18 males and 12 females) volunteered for the study. All subjects were required to perform a total of 56 tasks. Of these, 28 were stoop lifts and 28 were squat lifts. In each of the categories of stoop and squat lifts, the strengths were tested in standard posture, isokinetic (linear velocity of 500 mm/s), and isometric modes at half, three-quarters and full horizontal individual reach distances in sagittal, 30 degrees lateral and 60 degrees lateral planes. The strengths were measured using a static dynamic strength tester with a load cell and an IBM microcomputer with an A/D card. The peak and average strength values were extracted and statistically compared across conditions and gender (ANOVA). Finally a multiple regression analysis was carried out to predict strength as a function of reach, posture and velocity of lift. The ANOVA revealed a highly significant effect of gender, reach, plane and velocity (p < 0.01). All regression equations (108) were significant (p < 0.01), and more than 70% of variance in lifting strength was accounted for by the anthropometric variables and sagittal plane strength values. Such an established relationship allows one to predict the human lifting strength capabilities for industrial application based on simple anthropometric and strength characteristics.  相似文献   

4.
Kumar S 《Applied ergonomics》1991,22(5):317-328
This study was conducted to determine arm strength values for isometric and isokinetic efforts around the human trunk. Thirty-eight normal young adults (20 male and 18 female) performed a total of 19 tasks. These consisted of one self-selected optimum posture with upright stance and elbows bent at 90 degrees , designated as standard posture for isometric test. In addition, isometric testing was done sagittally symmetrical 30 degrees and 60 degrees lateral planes at half-, three-quarters- and full-reach distances at knuckle height. The isokinetic tests were done between knuckle height and shoulder height in postures identical to isometric tests. The sequence of these tasks was randomised. The peak strength in standard posture was invariably lower than the peak strength at half-reach in isometric condition in all three planes for both sexes with the exception of one condition among females (60 degrees lateral plane, half-reach isometric). Peak and average arm lift strengths of males were significantly higher than those of females (p < 0.01) and ranged between 44% and 71%. For both sexes isometric strength was significantly higher than isokinetic strength (p < 0.01). The peak and average strengths in the sagittal plane were invariably higher than those of asymmetric postures, with one exception among females. With increasing reach distance the strength declined significantly for all conditions among both genders (p < 0.01). The ANOVA showed that the gender, mode of lifting, postural symmetry and reach of lifting, in addition to affecting the peak and average strength individually (p < 0.01), had significant 2-way and 3-way interactions (p < 0.01). All strength values were inter-correlated (p < 0.01). The regressions predicting peak and average strengths from anthropometric characteristics and sagittal plane strengths accounted for 63% to 89% of all variance and were highly significant (p < 0.01).  相似文献   

5.
《Ergonomics》2012,55(6):591-607
Squat and stoop lifting have been examined in some detail, but limited data exist regarding the sudden release of load during such lifting. Ten participants performed squat and stoop lifting trials with loads of 20, 40, 60 and 80N, and sudden release was randomly included in one of the lifting cycles. Postural perturbation was recorded via centre of pressure displacement using a force platform and the electromyographic response of trunk and lower limb muscles was recorded.

Results indicated that irrespective of lifting posture, an ‘ankle’ response strategy to sudden release was elicited, where the anterior muscles of the lower limb contracted first, followed by the anterior trunk muscles, relaxation of the posterior trunk muscles and, finally, relaxation of the posterior lower limb muscles. The latency of muscles responding by contraction tended to decrease slightly with increasing load for both postures, while the latency of muscles responding by relaxation increased, resulting in increased trunk muscle co-contraction durations. The postural disturbance appeared to be greater for squat lifting than stoop lifting at the higher loads of 60 and 80N, as the centre of pressure moves significantly closer to the posterior limit of static stability (the line joining the heels).

In terms of stability and muscular response, squat lifting may not be the most appropriate strategy if a sudden release of loads greater than approximately 50N is likely.  相似文献   

6.
The purpose of this study was to evaluate the effect of progressive fatigue on factors that previously have been associated with increased risk of low back pain in various occupational settings, during a repetitive lifting task where a freestyle lifting technique was used. A laboratory experiment was conducted to evaluate electromyography amplitude, kinematic, and kinetic parameters of repetitive freestyle lifting during a 2‐hour lifting period. Subjective fatigue rating increased over time, indicating that the participant “felt” increasingly fatigued as the experiment progressed. Static composite strength decreased an average of 20% from the beginning to the end of the experiment. Effect of lifting posture (semi‐squat, semi‐stoop, and stoop) was observed on peak trunk flexion angle, trunk flexion angle at initiation of the lift, and knee angle at initiation of the lift indicating that, in freestyle lifting, participants assume quantitatively different lifting techniques. A significant effect of the time–posture interaction was observed on the dynamic leg lift floor to knuckle height strength, indicating that dynamic strength may change over time depending on lifting posture selected. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
Kingma I  Bosch T  Bruins L  van Dieën JH 《Ergonomics》2004,47(13):1365-1385
This study investigated the effects of initial load height and foot placement instruction in four lifting techniques: free, stoop (bending the back), squat (bending the knees) and a modified squat technique (bending the knees and rotating them outward). A 2D dynamic linked segment model was combined with an EMG assisted trunk muscle model to quantify kinematics and low back loading in 10 subjects performing 19 different lifting movements, using 10.5 kg boxes without handles. When lifting from a 0.05 m height with the feet behind the box, squat lifting resulted in 19.9% (SD 8.7%) higher net moments (p < 0.001) and 17.0% (SD 13.2%) higher compression forces (p < 0.01) than stoop lifting. This effect was reduced to 12.8% (SD 10.7%) for moments and a non-significant 7.4% (SD 16.0%) for compression forces when lifting with the feet beside the box and it disappeared when lifting from 0.5 m height. Differences between squat and stoop lifts, as well as the interaction with lifting height, could to a large extent be explained by changes in the horizontal L5/S1 intervertebral joint position relative to the load, the upper body acceleration, and lumbar flexion. Rotating the knees outward during squat lifts resulted in moments and compression forces that were smaller than in squat lifting but larger than in stoop lifting. Shear forces were small ( < 300 N) at the L4/L5 joint and substantial (1100 - 1400 N) but unaffected by lifting technique at the L5/S1 joint. The present results show that the effects of lifting technique on low back loading depend on the task context.  相似文献   

8.
Maximum acceptable repetitive lifting workload by Chinese subjects   总被引:2,自引:0,他引:2  
Z X Zhu  Z J Zhang 《Ergonomics》1990,33(7):875-884
This study used psychophysical methods to determine the acceptable mean maximum lifting workload for eight Chinese young male subjects, and examined the effects of lifting technique (including freestyle, stoop and squat), lifting frequency (including 2, 3, 4, 5 and 6 lifts/min) and physical characteristics on the maximum acceptable workload. The results are described as follows: (1) The maximum acceptable weights selected by subjects varied from 11.34 to 18.33 kg with changes in lifting technique and frequency. These data were lower than those previously obtained; (2) The upper limit of physiological tolerance over an 8 h workday was also generally lower than previously suggested. However, this upper limit varied with changes in lifting technique and frequency, and in some circumstances it was the same as or even higher than previous limit; (3) Lifting efficiency was affected significantly by technique and frequency. The rank order of efficiency for three lifting techniques were freestyle, stoop and squat. Efficiency was greatest when lifting frequency was between 5 and 6 lifts/min; and (4) The correlations between the maximum acceptable workloads selected by subjects and anthropometric sizes were significant, but those between maximum acceptable workload and isometric strength were not.  相似文献   

9.
《Ergonomics》2012,55(13):1365-1385
This study investigated the effects of initial load height and foot placement instruction in four lifting techniques: free, stoop (bending the back), squat (bending the knees) and a modified squat technique (bending the knees and rotating them outward). A 2D dynamic linked segment model was combined with an EMG assisted trunk muscle model to quantify kinematics and low back loading in 10 subjects performing 19 different lifting movements, using 10.5 kg boxes without handles. When lifting from a 0.05 m height with the feet behind the box, squat lifting resulted in 19.9% (SD 8.7%) higher net moments (p < 0.001) and 17.0% (SD 13.2%) higher compression forces (p < 0.01) than stoop lifting. This effect was reduced to 12.8% (SD 10.7%) for moments and a non-significant 7.4% (SD 16.0%) for compression forces when lifting with the feet beside the box and it disappeared when lifting from 0.5 m height. Differences between squat and stoop lifts, as well as the interaction with lifting height, could to a large extent be explained by changes in the horizontal L5/S1 intervertebral joint position relative to the load, the upper body acceleration, and lumbar flexion. Rotating the knees outward during squat lifts resulted in moments and compression forces that were smaller than in squat lifting but larger than in stoop lifting. Shear forces were small ( < 300 N) at the L4/L5 joint and substantial (1100 – 1400 N) but unaffected by lifting technique at the L5/S1 joint. The present results show that the effects of lifting technique on low back loading depend on the task context.  相似文献   

10.
Chow DH  Cheng IY  Holmes AD  Evans JH 《Ergonomics》2005,48(6):591-607
Squat and stoop lifting have been examined in some detail, but limited data exist regarding the sudden release of load during such lifting. Ten participants performed squat and stoop lifting trials with loads of 20, 40, 60 and 80N, and sudden release was randomly included in one of the lifting cycles. Postural perturbation was recorded via centre of pressure displacement using a force platform and the electromyographic response of trunk and lower limb muscles was recorded.Results indicated that irrespective of lifting posture, an 'ankle' response strategy to sudden release was elicited, where the anterior muscles of the lower limb contracted first, followed by the anterior trunk muscles, relaxation of the posterior trunk muscles and, finally, relaxation of the posterior lower limb muscles. The latency of muscles responding by contraction tended to decrease slightly with increasing load for both postures, while the latency of muscles responding by relaxation increased, resulting in increased trunk muscle co-contraction durations. The postural disturbance appeared to be greater for squat lifting than stoop lifting at the higher loads of 60 and 80N, as the centre of pressure moves significantly closer to the posterior limit of static stability (the line joining the heels).In terms of stability and muscular response, squat lifting may not be the most appropriate strategy if a sudden release of loads greater than approximately 50N is likely.  相似文献   

11.
《Ergonomics》2012,55(7):875-884
This study used psychophysical methods to determine the acceptable mean maximum lifting workload for eight Chinese young male subjects, and examined the effects of lifting technique (including freestyle, stoop and squat), lifting frequency (including 2, 3, 4, 5 and 6 lifts/min) and physical characteristics on the maximum acceptable workload. The results are described as follows: (1) The maximum acceptable weights selected by subjects varied from 11-34 to 1833?kg with changes in lifting technique and frequency. These data were lower than those previously obtained; (2) The upper limit of physiological tolerance over an 8?h workday was also generally lower than previously suggested. However, this upper limit varied with changes in lifting technique and frequency, and in some circumstances it was the same as or even higher than previous limit; (3) Lifting efficiency was affected significantly by technique and frequency. The rank order of efficiency for three lifting techniques were freestyle, stoop and squat. Efficiency was greatest when lifting frequency was between 5 and 6 lifts/min; and (4) The correlations between the maximum acceptable workloads selected by subjects and anthropometric sizes were significant, but those between maximum acceptable workload and isometric strength were not.  相似文献   

12.
The accurate estimation of wrist strength is an important component of ergonomics task evaluation, as a vast majority of occupational tasks involve use of the hands to generate forces and moments. The purpose of this study was to examine the interacting effects of forearm rotation (pronation/supination) and wrist exertion direction on strength at the wrist joint in males and females. A total of 24 male and female participants performed maximum isometric wrist exertions while maintaining a non-deviated wrist posture (no flexion/extension or radial/ulnar deviation) and an open hand. Maximum wrist moments were obtained in combinations of three forearm rotations (90° pronation, neutral, 90° supination) and four exertion directions (flexion, extension, radial and ulnar deviation). A greater effect of forearm rotation was observed for males, as strength in the neutral forearm posture was significantly different than pronated and supinated postures in 5 of 8 comparisons. For females, both wrist flexion and extension strengths were higher in neutral, compared to supinated forearm postures. The findings of this study suggest that wrist strength does depend on forearm rotation, and this interaction between axes needs to be accounted for in future strength capability estimates.Relevance to industryThis study shows that wrist strength estimates, currently used by ergonomics software packages in industry, can be improved to more accurately reflect the actual wrist strength capabilities of workers during hand-intensive tasks.  相似文献   

13.
Video‐based posture analysis employing a biomechanical model is gaining a growing popularity for ergonomic assessments. A human posture simulation method of estimating multiple body postural angles and spinal loads from a video record was developed to expedite ergonomic assessments. The method was evaluated by a repeated measures study design with three trunk flexion levels, two lift asymmetry levels, three viewing angles, and three trial repetitions as experimental factors. The study comprised two phases evaluating the accuracy of simulating self‐ and other people's lifting posture via a proxy of a computer‐generated humanoid. The mean values of the accuracy of simulating self‐ and humanoid postures were 12° and 15°, respectively. The repeatability of the method for the same lifting condition was excellent (~2°). The least simulation error was associated with side viewing angle. The estimated back compressive force and moment, calculated by a three‐dimensional biomechanical model, exhibited a range of 5% underestimation. The posture simulation method enables researchers to quantify simultaneously body posture angles and spinal loading variables with accuracy and precision comparable to on‐screen posture‐matching methods.  相似文献   

14.
In recent years, isokinetic strengths (dynamic strength exertions at constant speed) have almost replaced isometric (static) strengths in laboratory studies as measures of a person's strength exertion capabilities. Many industries are also showing a keen interest in replacing static strength usage with dynamic strength usage. The increasing acceptance of isokinetic strengths as a more valid and accurate measure of people's strength exertion capability has necessitated the development of isokinetic strength databases. This paper presents one-arm isokinetic pull strength profiles of males, engaged in infrequent exertion in a horizontal plane, as a function of posture (sitting and standing), reach distance (25, 40, and 55 cm for the sitting posture; 45, 65, and 85 cm for the standing posture), and angle of the preferred (stronger) arm from the frontal plane (0—frontal plane, 30, 60, 90, 120, and 150 deg). Twenty-five males participated in the study. The results indicated that more strength is exerted while standing. The strength also increases with the reach distance. The strength exertion becomes stronger as the angle of the arm increases to 90° from the frontal plane (i.e., the arm moves to the sagittal plane) and then weakens.  相似文献   

15.
《Ergonomics》2012,55(8):1039-1047
This study investigated prediction accuracy of a video posture coding method for lifting joint trajectory estimation. From three filming angles, the coder selected four key snapshots, identified joint angles and then a prediction program estimated the joint trajectories over the course of a lift. Results revealed a limited range of differences of joint angles (elbow, shoulder, hip, knee, ankle) between the manual coding method and the electromagnetic motion tracking system approach. Lifting range significantly affected estimate accuracy for all joints and camcorder filming angle had a significant effect on all joints but the hip. Joint trajectory predictions were more accurate for knuckle-to-shoulder lifts than for floor-to-shoulder or floor-to-knuckle lifts with average root mean square errors (RMSE) of 8.65°, 11.15° and 11.93°, respectively. Accuracy was also greater for the filming angles orthogonal to the participant's sagittal plane (RMSE = 9.97°) as compared to filming angles of 45° (RMSE = 11.01°) or 135° (10.71°). The effects of lifting speed and loading conditions were minimal. To further increase prediction accuracy, improved prediction algorithms and/or better posture matching methods should be investigated.

Statement of Relevance: Observation and classification of postures are common steps in risk assessment of manual materials handling tasks. The ability to accurately predict lifting patterns through video coding can provide ergonomists with greater resolution in characterising or assessing the lifting tasks than evaluation based solely on sampling with a single lifting posture event.  相似文献   

16.
The study investigated the effects of frequency (10 and 20 lifts/min) and technique (squat and stoop) of repetitive lifting of a barbell (19 kg) on the relationship between mean power output (Pm) and energy cost in 9 male power-lifters. Oxygen uptake (VO2) was measured directly and continuously and power output was deduced from film analysis using an inverse dynamic analysis. Power output and VO2 were significantly greater for squat than for stoop lifting at the same frequency. The mechanical efficiency (ME), defined as Pm divided by the energy equivalence of VO2, increased from 12% at rate 10 to 18.5% at rate 20, but there was no significant difference between the two techniques. The effectiveness (EF), defined as the productive external power output (only work done on the barbell) divided by the energy equivalence of VO2, was significantly higher for the stoop lift than for the squat lift. EF is judged as a more useful measure than ME for characterizing the relative energy cost of a lifting task.  相似文献   

17.
《Ergonomics》2012,55(12):2563-2575
The postures of three groups of employees were measured: straddle carrier drivers, crane operators and office employees. This type of sedentary work can be characterized as being highly static. Using a continuous three-dimensional registration device, the postures and movements of head and trunk were recorded simultaneously. The results show that the adopted postures and patterns of movement were predominantly imposed by the workplace. The posture of the crane operators was the most static compared to the other occupations. The most adopted posture in the sagittal plane for crane operators was trunk flexion of 5° and head flexion of 60°. Typically, a straddle carrier driver rotated his head more than 45° to the left or right for 28% of the day, which far exceeded that of the other groups. The measuring device provides accurate and reproducible data that can subsequently be used for calculating the postural load and for ergonomic analysis.  相似文献   

18.
This study investigated the effect of posture on lifting performance. Twenty-three male soldiers lifted a loaded box onto a platform in standing and seated postures to determine their maximum lift capacity and maximum acceptable lift. Lift performance, trunk kinematics, lumbar loads, anthropometric and strength data were recorded. There was a significant main effect for lift effort but not for posture or the interaction. Effect sizes showed that lumbar compression forces did not differ between postures at lift initiation (Standing 5566.2?±?627.8 N; Seated 5584.0?±?16.0) but were higher in the standing posture (4045.7?±?408.3 N) when compared with the seated posture (3655.8?±?225.7 N) at lift completion. Anterior shear forces were higher in the standing posture at both lift initiation (Standing 519.4?±?104.4 N; Seated 224.2?±?9.4 N) and completion (Standing 183.3?±?62.5 N; Seated 71.0?±?24.2 N) and may have been a result of increased trunk flexion and a larger horizontal distance of the mass from the L5-S1 joint.

Practitioner Summary: Differences between lift performance and lumbar forces in standing and seated lifts are unclear. Using a with-in subjects repeated measures design, we found no difference in lifted mass or lumbar compression force at lift initiation between standing and seated lifts.  相似文献   


19.
《Ergonomics》2012,55(15):1749-1769
The purpose of this study was to examine the interfering effects of physical and mental tasks on shoulder isometric strength in different postures. Fifteen volunteers (seven women, eight men) performed a series of isometric shoulder exertions at 30°, 60° and 90° of both shoulder flexion and abduction alone and with the addition of a 30% grip force, a mental task (Stroop test) and both additional tasks simultaneously. The shoulder tasks were completed either at maximal intensity, or while maintaining a shoulder posture without any additional effort. Surface electromyography (EMG) from seven muscles of the shoulder girdle and shoulder moment were collected for each 6 s shoulder exertion. When normalized to maximum exertion, no differences were found between genders and no differences existed between conditions when subjects maintained each posture without exerted force. In the maximal shoulder exertion trials, an increase in shoulder angle (in either plane) resulted in an increase in EMG in most muscles, while shoulder moment decreased in flexion and remained constant in abduction. Shoulder moments and muscle activation were greatest in the shoulder exertion alone condition followed by adding a 30% grip and the Stroop test, with the addition of both tasks further reducing the exerted shoulder moment and EMG. However, muscle activity did not always decrease with shoulder strength and remained elevated, indicating a complex coactivation pattern produced by an interfering role of the tasks. Overall, it was found that a mental task can have the same or greater effect as a concurrent grip and should be considered when assessing muscular loading in the workplace, as typical biomechanical modelling may underestimate internal loads. The results not only provide valuable shoulder strength data but also practical strength values, depending on additional tasks.  相似文献   

20.
The objective of this study was to determine low-seam mine worker exposure to various postures as they pertain to job classifications and job tasks. Sixty-four mine workers from four low-seam coal mines participated. The mine workers reported the tasks they were required to complete and the two postures they used most frequently to perform them. They were provided with a schematic of postures from which to select. The two postures reported most frequently were identified for each task along with the job classification of the workers performing the tasks. Of the 18 tasks reported, over two thirds were performed by at least two different job classifications and over one third were performed by four or more job classifications. Across tasks, the postures used appeared to vary greatly. However, when grouped by job classification, the most frequently reported posture across all job classifications was kneeling near full flexion. Operating the continuous miner was associated with frequent squatting and was likely used because it affords great mobility, allowing operators to move quickly to avoid hazards. However, for environments with a restricted vertical height such as low-seam mining, the authors recommend squatting be avoided as data demonstrates that large amounts of femoral rollback and high muscle activity for the extensors when performing lateral lifts in this posture. Kneeling near full flexion was reported as the most frequently used posture by all job classifications and was likely due to the fact that it requires the least amount of muscle activity to maintain and has reduced pressures at the knee. However, the authors recommend this posture be avoided when performing lateral lifting tasks. Like squatting, kneeling near full flexion results in increased femoral rollback and may increase the stresses applied to the meniscus. Unlike lateral lifting, maintaining a static posture results in knee loading and muscle activity such that the mine worker should consider kneeling near full flexion and sitting on their heels. Although kneeling near full flexion is associated with injuries, there are benefits to this posture that are realized when statically kneeling (minimal muscle activity, allows worker to maintain an upright torso in low heights, and decreased loading at the knee). However, cartilage is avascular and nourished by synovial fluid. Therefore, one should frequently rotate between postures, assuming a more upright kneeling posture when possible and frequently fully flexing and extending the knee allowing nutrients to the cartilage.Relevance to industryIn 2009, over one fourth of underground coal mines that produced coal in the United States were considered low seam with an average working height of <109.2 cm (MSHA, 2009) restricting workers to their knees. Data exists regarding the biomechanical implications of kneeling postures and demonstrates the possibility of detrimental consequences to varying degrees for each posture. With each posture posing a different level of exposure to musculoskeletal disorder risk factors, it is essential to determine the postures mine workers use to perform their job tasks and how their postural options are restricted by the low-seam underground mining environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号