首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Giacomin J 《Ergonomics》2004,47(13):1454-1474
A test facility and protocol were developed for measuring the seated, vertical, whole-body vibration response of small children of less than 18 kg in mass over the frequency range from 1 to 45 Hz. The facility and protocol adhered to the human vibration testing guidelines of BS7085 and to current codes of ethics for research involving children. Additional procedures were also developed which are not currently defined in the guidelines, including the integral involvement of the parents and steps taken to maximize child happiness. Eight children were tested at amplitudes of 0.8 and 1.2 m/s(2) using band-limited, Gaussian, white noise acceleration signals defined over the frequency interval from 1 to 50 Hz. Driving point apparent mass modulus and phase curves were determined for all eight children at both test amplitudes. All results presented a single, principal, anti-resonance, and were similar to data reported for primates and for adult humans seated in an automotive posture which provided backrest support. The mean frequency of the apparent mass peak was 6.25 Hz for the small children, as compared to values between 6.5 - 8.5 Hz for small primates and values between 6.5 - 8.6 Hz for adults seated with backrest support. The peak value of the mean, normalized, apparent mass was 1.54 for the children, which compares to values from 1.19 to 1.45 reported in the literature for small primates and 1.28 for adults seated with backrest support. ISO standard 5982, which specifies a mean, normalized, apparent mass modulus peak of 1.50 at a frequency of 4.0 Hz for adults seated without backrest support, provides significant differences.  相似文献   

2.
The vertical driving-point mechanical impedance characteristics applicable to seated vehicle drivers are measured in the 0.625–10 Hz frequency range with excitation amplitudes ranging from 1.0 to 2.0 m s−2 using a whole-body vehicular vibration simulator. The measurements are performed for seated subjects with feet supported and hands held in a driving position. Variations in the seated posture, backrest angle, and nature and amplitude of the vibration excitation are introduced within a prescribed range of likely conditions to illustrate their influence on the driving-point mechanical impedance of seated vehicle drivers. Within the 0.75–10 Hz frequency range and for excitation amplitudes maintained below 4 m s−2, a four-degree-of-freedom linear driver model is proposed for which the parameters are estimated to satisfy both the measured driving-point mechanical impedance and the seat-to-head transmissibility characteristics defined from a synthesis of published data for subjects seated erect without backrest support. The parameter identification technique involves the solution of a multivariable optimization function comprising the sum of squared magnitude and phase errors associated with both the mechanical impedance and seat-to-head transmissibility target values, subject to limit constraints identified from the anthropometric and biomechanical data. The model response, however, is found to provide a closer agreement with the mechanical impedance target values than that with the seat-to-head transmissibility. From the model, the main body resonant frequencies computed on the basis of both biodynamic response functions are found to be within close bounds to that expected for the human body.

Relevance to industry

The development of an appropriate analytical seated vehicle driver model should provide means of estimating the forces and motions being transmitted within the body under specific vehicular vibration environments. Furthermore, its use in conjunction with a corresponding model for the vehicle seat should allow the prediction of the driver's vibration exposure levels and the seat's ability to attenuate the vibration in particular vehicles.  相似文献   


3.
The biodynamic response of human body seated without a back support and exposed to vertical whole-body vibration have been standardized in ISO 5982 and DIN 45676 in terms of driving-point mechanical impedance and apparent mass. A comparison of ranges defined in two standards, however, reveal considerable differences in both the magnitude and phase. Greater differences are more evident for the three body mass groups, which suggests the lack of adequate reference values of biodynamic responses of seated human subjects of different body masses. In this experimental study, the biodynamic responses of seated humans within three different body mass ranges are characterized under different magnitudes of vibration and three different sitting postures in an attempt to define reference values of apparent mass for applications in mechanical-equivalent model development and anthropodynamic manikin design. Laboratory measurements were performed with adult male subjects of total body mass in the vicinity of 55, 75 and 98 kg (nine subjects for each mass group) seated with and without an inclined back support and exposed to three different magnitudes of white-noise vertical vibration (0.5, 1.0 and 2.0 m/s2 unweighted rms acceleration) in the frequency range between 0.5 and 20 Hz. The measured data were analyzed to derive the mean magnitude and phase responses for the three body masses, posture and excitation conditions. The mean magnitude responses of subjects within three mass groups were compared with idealized ranges defined in ISO 5982 and mean values described in DIN 45676 for no back support condition. The results revealed significant differences between the mean measured and standardized magnitudes, suggesting that the current standardized values do not describe the biodynamic responses of seated occupant of different masses even for the back not supported condition. The mean measured responses revealed most important effect of body mass, irrespective of the sitting posture. The reference values of apparent mass responses of seated body subject to vertical whole-body vibration are thus defined for three mass groups and different back support conditions that may be considered applicable for ranges of excitations considered. The responses of the body seated without a back support, also revealed notable influences of excitation magnitude, particularly on the primary peak frequencies.  相似文献   

4.
The effect of backrest inclination on spinal height changes was tested during static sitting and seated whole-body vibrations. The vibration input was sinusoidal with a frequency of 5 Hz and an acceleration of 0.1 g rms. The backrest inclinations tested were 110 degrees and 120 degrees . The 110 degrees backrest caused less shrinkage than did the 120 degrees during static sitting, whereas the opposite was true when vibration was present, although the differences between the backrests were not statistically significant. Only when the results were compared with results from exposure to unsupported sitting were the differences statistically significant for both static sitting and seated vibrations when the 110 degrees backrest was used and for vibration with the 120 degrees backrest. Thus we conclude that an inclined backrest reduces the effects of vibration. More importantly, emphasis should be placed upon seats and seat materials that can attenuate vibration.  相似文献   

5.
Zhen Zhou 《Ergonomics》2014,57(5):693-713
The dependence of biodynamic responses of the seated human body on the frequency, magnitude and waveform of vertical vibration has been studied in 20 males and 20 females. With sinusoidal vibration (13 frequencies from 1 to 16 Hz) at five magnitudes (0.1–1.6 ms? 2 r.m.s.) and with random vibration (1–16 Hz) at the same magnitudes, the apparent mass of the body was similar with random and sinusoidal vibration of the same overall magnitude. With increasing magnitude of vibration, the stiffness and damping of a model fitted to the apparent mass reduced and the resonance frequency decreased (from 6.5 to 4.5 Hz). Male and female subjects had similar apparent mass (after adjusting for subject weight) and a similar principal resonance frequency with both random and sinusoidal vibration. The change in biodynamic response with increasing vibration magnitude depends on the frequency of the vibration excitation, but is similar with sinusoidal and random excitation.  相似文献   

6.
This study investigated the effects of reclined backrest angles on cognitive and psycho-motor tasks during exposure to vertical whole-body vibration. Twenty participants were each exposed to three test stimuli of vertical vibration: 2-8 Hz; 8-14 Hz and 14-20 Hz, plus a stationary control condition whilst seated on a vibration platform at five backrest angles: 0° (recumbent, supine) to 90° (upright). The vibration magnitude was 2.0 ms(-2) root-mean-square. The participants were seated at one of the backrest angles and exposed to each of the three vibration stimuli while performing a tracking and choice reaction time tasks; then they completed the NASA-TLX workload scales. Apart from 22.5° seat backrest angle for the tracking task, backrest angle did not adversely affect the performance during vibration. However, participants required increased effort to maintain performance during vibration relative to the stationary condition. These results suggest that undertaking tasks in an environment with vibration could increase workload and risk earlier onset of fatigue. PRACTITIONER SUMMARY: Current vibration standards provide guidance for assessing exposures for seated, standing and recumbent positions, but not for semi-recumbent postures. This paper reports new experimental data systematically investigating the effect of backrest angle on human performance. It demonstrates how workload is elevated with whole-body vibration, without getting affected by backrest angle.  相似文献   

7.
《Ergonomics》2012,55(12):1806-1822
The apparent mass (AM) responses of human body seated on elastic seat, without and with a vertical back support, are measured using a seat pressure sensing mat under three levels of vertical vibration (0.25, 0.50 and 0.75 m/s2 rms acceleration) in 0.50–20 Hz frequency range. The responses were also measured with a rigid seat using the pressure mat and a force plate in order to examine the validity of the pressure mat. The pressure mat resulted in considerably lower AM magnitudes compared to the force plate. A correction function was proposed and applied, which resulted in comparable AM from both measurement systems for the rigid seat. The correction function was subsequently applied to derive AM of subjects seated on elastic seat. The responses revealed lower peak magnitude and corresponding frequency compared to those measured with rigid seat, irrespective of back support and excitation considered.  相似文献   

8.
Basri B  Griffin MJ 《Ergonomics》2011,54(12):1214-1227
This study determined how backrest inclination and the frequency of vibration influence the perception and discomfort of vibration applied parallel to the back (vertical vibration when sitting upright, horizontal vibration when recumbent). Subjects experienced backrest vibration at frequencies in the range 2.5 to 25 Hz at vibration magnitudes up to 24 dB above threshold. Absolute thresholds, equivalent comfort contours, and the principal locations for feeling vibration were determined with four backrest inclinations: 0° (upright), 30°, 60° and 90° (recumbent). With all backrest inclinations, acceleration thresholds and equivalent comfort contours were similar and increased with increasing frequency at 6 dB per octave (i.e. velocity constant). It is concluded that backrest inclination has little effect on the frequency dependence of thresholds and equivalent comfort contours for vibration applied along the back, and that the W (d) frequency weighting in current standards is appropriate for evaluating z-axis vibration of the back at all backrest inclinations. STATEMENT OF RELEVANCE: To minimise the vibration discomfort of seated people, it is necessary to understand how discomfort varies with backrest inclination. It is concluded that the vibration on backrests can be measured using a pad between the backrest and the back, so that it reclines with the backrest, and the measured vibration evaluated without correcting for the backrest inclination.  相似文献   

9.
Previous research has demonstrated deficiency in blood supply to lumbar muscles in the form of decrease in oxygenation and blood volume during short duration of exposure to seated whole-body vibration (WBV). However, it is not clear if these WBV-induced lumbar muscle responses are comparable, for example, to that of an endurance exercise-induced oxygenation and blood volume responses?On a separate day, eight healthy participants performed a seated arm cranking exercise until volitional exhaustion. On three separate days, participants were exposed to 3, 4.5, and 6 Hz on a vibration simulator for a period of 16 min. During the fifth minute of WBV ‘with’ and ‘without’ backrest support, participants performed rhythmic handgrip contractions for 1 min. Oxygenation and blood volume responses from the lumbar region were measured utilizing Near-infrared spectroscopy.A percent change in oxygenation and blood volume responses during WBV was expressed as a function of spectroscopy-derived minimum (at the exhaustion) and maximum (during recovery from WBV) responses obtained from the arm cranking exercise. Highest decrease in spectroscopy-derived responses (represented in mean values) was observed: at 4.5 Hz; sitting ‘without’ backrest support; and handgrip contractions during exposure to WBV.Spectroscopy-derived hemodynamic responses obtained during the endurance exercise were significantly lower than the corresponding values measured at different WBV conditions, implying that although the spinal resonance frequency of 4.5 Hz decreases oxygen saturation considerably, progress of oxygen depletion is further evidenced during an endurance exercise.Relevance to industryEstablishing fully oxidized and reduced physiologic states for the lumbar muscle by occluding arterial blood flow is difficult. However, by utilizing an aerobic protocol until volitional exhaustion, lumbar oxygenation and blood volume responses for a variety of WBV-related exposures can be compared. It was concluded that WBV-induced lumbar hemodynamic responses fall well within the reduced and oxidized conditions established through the endurance arm cranking exercise.  相似文献   

10.
《Ergonomics》2012,55(12):1214-1227
This study determined how backrest inclination and the frequency of vibration influence the perception and discomfort of vibration applied parallel to the back (vertical vibration when sitting upright, horizontal vibration when recumbent). Subjects experienced backrest vibration at frequencies in the range 2.5 to 25 Hz at vibration magnitudes up to 24 dB above threshold. Absolute thresholds, equivalent comfort contours, and the principal locations for feeling vibration were determined with four backrest inclinations: 0° (upright), 30°, 60° and 90° (recumbent). With all backrest inclinations, acceleration thresholds and equivalent comfort contours were similar and increased with increasing frequency at 6 dB per octave (i.e. velocity constant). It is concluded that backrest inclination has little effect on the frequency dependence of thresholds and equivalent comfort contours for vibration applied along the back, and that the W d frequency weighting in current standards is appropriate for evaluating z-axis vibration of the back at all backrest inclinations.

Statement of Relevance: To minimise the vibration discomfort of seated people, it is necessary to understand how discomfort varies with backrest inclination. It is concluded that the vibration on backrests can be measured using a pad between the backrest and the back, so that it reclines with the backrest, and the measured vibration evaluated without correcting for the backrest inclination.  相似文献   

11.
ObjectiveThis study aimed to assess the effects of backrest inclination and vibration frequency on muscle activity in a dynamic environment using a musculoskeletal model.MethodThe muscle activity modeling method was used to analyze a full body musculoskeletal system of a seated person with a public domain rigid body model in an adjustable car seat. This model was established using AnyBody Modeling System, based on the inverse dynamic approach. And the min/max criterion in dealing with the muscle redundancy problem. Ten healthy subjects were exposed to whole body vibration (WBV) with five frequencies (3, 4.5, 6, 7, and 8 Hz) in the vertical direction in a randomized order on three separate days. The displacement of the seat-pan and head was measured using a hybrid Polaris spectra system to obtain the seat-to-head (STH) transmissibility. Muscle oxygenation was measured using near-infrared spectroscopy. The validity of the model was tested using STH transmissibility and muscle oxygenation.ResultsIncreased vibration frequency caused high muscle activities of the abdomen and the right leg with a backrest forward inclination angle. The muscle activities of the left leg decreased at a backrest backward inclination except at inclination angles of 15° and 30°. Muscle activity of the lumbar suddenly increased at a backrest inclination angle of 5° and vibration frequency of 5 Hz. Muscle activities were higher under vibration than that without vibration.ConclusionVibration frequency significantly affected the muscle activity of the lumbar area. Likewise, the inclination degree of the backrest significantly affected the muscle activities of the right leg and the abdomen. The combination of vibration and forward inclination of the backrest can be used to maximize the muscle activity of the leg, similar to the abdomen and lumbar muscles.Relevance to the industryThe musculoskeletal model established in the present study provides a method that can be used to investigate the biomechanical response of seated drivers to WBV. This model helps protect drivers from occupational injury.  相似文献   

12.
The gender and anthropometric effects on apparent mass characteristics of the seated body exposed to vertical vibration are investigated through laboratory measurements. The study was conducted on 31 male and 27 female subjects, exposed to three levels of vertical vibration (0.25, 0.50 and 0.75 m/s2 rms acceleration) in the 0.50 to 20 frequency range, while seated without a back support and against a vertical back support. The apparent mass responses were analyzed by grouping datasets in three ranges of mass-, build- and stature-related parameters for the male and female subjects. Comparisons of responses of male and female subjects with comparable anthropometric properties showed distinctly different biodynamic responses of the two genders. The primary resonance frequency of male subjects was significantly (p < 0.001) higher than the female subjects of comparable body mass but the peak magnitude was comparable for both the gender groups. The male subjects showed greater softening with increasing excitation magnitude compared to the female subjects, irrespective of the sitting condition. The male subjects showed significantly higher peak magnitude response than those of the female subjects for the same anthropometric properties, except for the total and lean body mass. The peak magnitude was linearly correlated with the body mass, body mass index, body fat and hip circumference (r2 > 0.7), irrespective of the back support and excitation conditions for both the genders.Relevance to the industryThe apparent mass responses of the human body exposed to whole-body vibration form an essential basis for an understanding of mechanical-equivalent properties of the body, developments in frequency-weightings for assessment of exposure risks and anthropodynamic manikins for assessment of seats. The effects of gender and anthropometric parameters on the AM response are vital for seeking better seat designs, and anthropodynamic manikins for assessments of seating for male as well as female workers.  相似文献   

13.
《Ergonomics》2012,55(8):705-719
The effects on discomfort of the frequency and direction of the translational vibration of a footrest and flat firm backrest have been studied in two experiments. At frequencies in the range 2.5-63 Hz, the first experiment determined the levels of fore-and-aft, lateral and vertical vibration of the feet of seated subjects which caused them discomfort equivalent to that from 0.8 m/s2 r.m.s. 10 Hz vertical vibration of a firm flat seat. The levels of fore-and-aft, lateral and vertical vibration at the back of a seat which were equivalent to 0.8 m/s2 r.m.s. 10 Hz vertical seat vibration were determined in the second experiment. The vibration of the feet or back occurred without simultaneous vibration at the seat.

Individual and group equivalent comfort contours are presented. It is concluded that the data provide a useful initial indication of the relative contribution of foot and back vibration to discomfort. Equivalent comfort contours for foot vibration were similar for all three directions of vibration. The contours for vibration of the back show a high sensitivity to fore-and-aft vibration. The results obtained from two additional studies show that vibration from a backrest and other variations in seating conditions can influence subject comfort.  相似文献   

14.
National and International Standards (e.g. BS 6841 and ISO 2631-1) provide methodologies for the measurement and assessment of whole-body vibration in terms of comfort and health. The EU Physical Agents (Vibration) Directive (PAVD) provides criteria by which vibration magnitudes can be assessed. However, these standards only consider upright seated (90°) and recumbent (0°) backrest angles, and do not provide guidance for semi-recumbent postures. This article reports an experimental programme that investigated the effects of backrest angle on comfort during vertical whole-body vibration. The series of experiments showed that a relationship exists between seat backrest angle, whole-body vibration frequency and perceived levels of discomfort. The recumbent position (0°) was the most uncomfortable and the semi-recumbent positions of 67.5° and 45° were the least uncomfortable. A new set of frequency weighting curves are proposed which use the same topology as the existing BS and ISO standards. These curves could be applied to those exposed to whole-body vibration in semi-recumbent postures to augment the existing standardised methods. PRACTITIONER SUMMARY: Current vibration standards provide guidance for assessing exposures for seated, standing and recumbent positions, but not for semi-recumbent postures. This article reports new experimental data systematically investigating the effect of backrest angle on discomfort experienced. It demonstrates that most discomfort is caused in a recumbent posture and that least was caused in a semi-recumbent posture.  相似文献   

15.
We examined the influence of backrest inclination and vergence demand on the posture and gaze angle that workers adopt to view visual targets placed in different vertical locations. In the study, 12 participants viewed a small video monitor placed in 7 locations around a 0.65-m radius arc (from 65 degrees below to 30 degrees above horizontal eye height). Trunk posture was manipulated by changing the backrest inclination of an adjustable chair. Vergence demand was manipulated by using ophthalmic lenses and prisms to mimic the visual consequences of varying target distance. Changes in vertical target location caused large changes in atlanto-occipital posture and gaze angle. Cervical posture was altered to a lesser extent by changes in vertical target location. Participants compensated for changes in backrest inclination by changing cervical posture, though they did not significantly alter atlanto-occipital posture and gaze angle. The posture adopted to view any target represents a compromise between visual and musculoskeletal demands. These results provide support for the argument that the optimal location of visual targets is at least 15 degrees below horizontal eye level. Actual or potential applications of this work include the layout of computer workstations and the viewing of displays from a seated posture.  相似文献   

16.
The purpose of this study was to examine the effects of backrest configuration on seatpan and backrest pressure, spinal posture, and comfort. Thirty volunteers (15 male, 15 female) typed a standardized text passage while seated at a computer workstation in five backrest configurations: chair only, chair with a supplementary backrest, and with each of three lumbar pad thicknesses. Pressure, lumbar and cervical angles were collected during 15-min trials. Subjective data were collected during each trial and at the end of the entire protocol. The addition of a supplementary backrest to a standard chair reduced peak and average pressure on the back by 35% and 20%, respectively (P<0.02). Lumbar lordosis was observed only when lumbar pads were used, being greatest with the large pad. Participants preferred backrest configurations that had lower pressure on the back and less lordotic lumbar posture (backrest only or 3 cm lumbar pad), regardless of anthropometrics. Comfort was rated highest in conditions that would not necessarily be considered biomechanically ideal. Further delineation between specific comfort and objective seating variables is required to effectively reduce and prevent low back pain.  相似文献   

17.
Basri B  Griffin MJ 《Ergonomics》2012,55(8):909-922
This study determined how backrest inclination and the frequency and magnitude of vertical seat vibration influence vibration discomfort. Subjects experienced vertical seat vibration at frequencies in the range 2.5-25 Hz at vibration magnitudes in the range 0.016-2.0 ms(-2) r.m.s. Equivalent comfort contours were determined with five backrest conditions: no backrest, and with a stationary backrest inclined at 0° (upright), 30°, 60° and 90°. Within all conditions, the frequency of greatest sensitivity to acceleration decreased with increasing vibration magnitude. Compared to an upright backrest, around the main resonance of the body, the vibration magnitudes required to cause similar discomfort were 100% greater with 60° and 90° backrest inclinations and 50% greater with a 30° backrest inclination. It is concluded that no single frequency weighting provides an accurate prediction of the discomfort caused by vertical seat vibration at all magnitudes and with all backrest conditions. PRACTITIONER SUMMARY: Vertical seat vibration is a main cause of vibration discomfort for drivers and passengers of road vehicles. A frequency weighting has been standardised for the evaluation of vertical seat vibration when sitting upright but it was not known whether this weighting is suitable for the reclined sitting postures often adopted during travel.  相似文献   

18.
《Ergonomics》2012,55(11):1800-1812
This experimental study investigated the perception of fore-and-aft whole-body vibration intensity using cross-modality matching (CM) and magnitude estimation (ME) methods. Thirteen subjects were seated on a rigid seat without a backrest and exposed to sinusoidal stimuli from 0.8 to 12.5 Hz and 0.4 to 1.6 ms? 2 r.m.s. The Stevens exponents did not significantly depend on vibration frequency or the measurement method. The ME frequency weightings depended significantly on vibration frequency, but the CM weightings did not. Using the CM and ME weightings would result in higher weighted exposures than those calculated using the ISO (2631-1, 1997) Wd. Compared with ISO Wk, the CM and ME-weighted exposures would be greater at 1.6 Hz and lesser above that frequency. The CM and ME frequency weightings based on the median ratings for the reference vibration condition did not differ significantly. The lack of a method effect for weightings and for Stevens exponents suggests that the findings from the two methods are comparable.  相似文献   

19.
This study seeks to examine human vibration response using a musculoskeletal model that appropriately considers stretch reflex. The stretch reflex is modeled with a feedback control approach, and integrated into a generic musculoskeletal model to study the active muscle forces during seated whole body vibration. The model is used to investigate the effects of stretch reflex gain, vibration frequency and vibration magnitude on transmissibility from the seat to upper body and lower body and on muscle activations.The overall model is validated by comparison with thoracic and lumbar muscle activities measured in human participants during whole body vibration. The simulation results were consistent with the experimental results that the peak transmissibility occurred at resonance frequency of 5–6 Hz, and were in line with other experimental studies that found a primary resonance of 4–6 Hz. Furthermore, the peak normalized Electromyography (EMG) level accorded with the activation level for both thoracic and lumbar regions. What's more, an increase of primary resonance frequency was observed with increasing gains of stretch reflex. In contrary, the peak seat transmissibility of the upper body and lower body had a significant reduction.The major contribution of this model is that the proposed stretch reflex model provides a useful method to consider muscle active response in whole body vibration simulation. This may be used in future studies to better understand how stretch reflex affects spinal loading in a variety of conditions.  相似文献   

20.
The perception of vehicle ride comfort is influenced by the dynamic performance of full-depth foam used in many vehicle seats. The effects of the thickness of foam on the dynamic stiffness (i.e., stiffness and damping as a function of frequency) of foam cushions with three thicknesses (60, 80, and 100 mm), and the vibration transmitted through these cushions at the seat pan and the backrest were measured with 12 subjects (6 males and 6 females). With increasing thickness, the stiffness and the damping of the foam decreased. With increasing thickness of foam at the seat pan, the resonance frequencies around 4 Hz in the vertical in-line and fore-and-aft cross-axis transmissibilities of the seat pan cushion and the backrest cushion decreased. For the conditions investigated, it is concluded that the thickness of foam at a vertical backrest has little effect on the vertical in-line or fore-and-aft cross-axis transmissibilities of the foam at either the seat pan or the backrest. The frequencies of the primary resonances around 4 Hz in the vertical in-line transmissibility and the fore-and-aft cross-axis transmissibility of foam at the seat pan were highly correlated. Compared to sitting on a rigid seat pan with a foam backrest, sitting with foam at both the seat pan and the backrest reduced the resonance frequency in the vertical in-line transmissibility of the backrest foam and increased the associated transmissibility at resonance, while the fore-and-aft cross-axis transmissibility of the backrest was little affected. Compared to sitting without a backrest, sitting with a rigid vertical backrest increased the resonance frequency of the fore-and-aft cross-axis transmissibility of the seat pan cushion and increased the transmissibility at resonance.Relevance to industryThe transmissibility of a seat is determined by the dynamic properties of the occupant of the seat and the dynamic properties of the seat. This study shows how the thicknesses of foam at a seat pan and foam at a backrest affect the in-line and cross-axis transmissibilities of the foams at the seat pan and the backrest. The findings have application to the design of vehicle seats to minimise the transmission of vibration to the body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号