首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Front load carriage is a common occupational task in some industries (e.g. agriculture, construction), but, as compared to lifting tasks, relatively little research has been conducted on the biomechanical loading during these activities. The focus of this study was to explore the low back biomechanics during these activities and, specifically, to examine the effects of load height and walking speed on trunk muscle activity and trunk posture. Eleven male participants participated in two separate front load-carriage experiments. The first experiment called for carrying a barbell (with weight corresponding to 20% of elbow flexion strength) at three heights (knuckle height, elbow height and shoulder height) at a constant horizontal distance from the spine. The second experiment called for participants to carry a bucket of potatoes weighing 14 kg at the same three heights, but with no further restrictions in technique. In both experiments, the participants performed this task while either standing still or walking at a self-selected speed. As they performed these tasks, the activity levels of the right-side muscle of the rectus abdominis, external oblique, biceps brachii, anterior deltoid and three levels (T9, T12 and L3) of the erector spinae were sampled. Mid-sagittal plane trunk posture was also quantified using three magnetic field-based motion sensors at T9, T12 and L3. The results showed a significant effect of both walking speed and load height on trunk posture and trunk muscle activity levels in both the barbell and bucket experiments. In the barbell experiment, the walking trials generated 43% more trunk muscle activity than the standing trials. Trials at shoulder height produced 11% more muscle activity than trials at elbow height in the T9 erector spinae muscles and 71% more muscle activity in the anterior deltoid. In the bucket experiment, trunk muscle activity responded in a similar fashion, but the key result here was the quantification of the natural hyperextension posture of the spine used to balance the bucket of potatoes. These results provide insight into muscle activation patterns in dynamic settings, especially (load) carrying biomechanics, and have implications in industrial settings that require workers to carry loads in front of their bodies.  相似文献   

2.
The objective of the study was to evaluate the effects of udder height on upper body kinematics and muscle activity during a simulated attachment task in a parallel parlor set up, and the effects of udder access method (back or side) on the task biomechanics. Twenty males performed the task under conditions that simulated three udder heights and two udder access methods. The muscular load and kinematics during the task confirmed that milking is a physically demanding task. Trunk flexion angle increased with decreasing udder height, and the erector spinae activation was higher when the udder was below shoulder height compared to at or above. Compared to accessing the udder from side of the cow (herringbone parlor style), accessing from behind (Parallel parlor style) was associated with lower trunk flexion, greater shoulder horizontal adduction, lower shoulder elevation, and greater anterior deltoid activation. Milking in herringbone parlor style and with the udder at or above shoulder level may help reduce strain on the trunk/neck.  相似文献   

3.
The flexion–relaxation phenomenon (FRP) in back muscles is related to the lower back load. Although the FRP has been widely discussed, the effect of wearing jeans—a common attire in workplaces—on the FRP is unexplored. This study recruited 20 male participants with high and low flexibilities (10 each) and measured the related muscle activity and lumbopelvic movement at five trunk flexion angles (0°–90°) when wearing two types of bottom wears (swim trunks and fit jeans). Results revealed that the bottom wear type and trunk angle significantly affected all responses, whereas flexibility affected only erector spinae and hamstring activities. Participants with high flexibility and wearing swim trunks exhibited greater erector spinae activity than did those with low flexibility and wearing jeans. Thus, those who have low flexibility or are wearing jeans are likely to experience more activity reductions in erector spinae. However, the result with hamstring activity was the opposite. Wearing jeans limited participants’ pelvic rotation, forcing them to bend their lumbar spine further to complete trunk flexion, thus reducing erector spinae activity. A looser attire should be chosen to avoid constraining the pelvic rotation when work involves a deep trunk flexion.Relevance to industryPeople wearing jeans have limited pelvic movement and decreased erector spinae activity during deep trunk flexion, and this may further strain their interspinous ligaments. Thus, people should not wear fit jeans when in workplaces where their work involves stooping or trunk flexion exceeding 45° to minimize the load on their lower back.  相似文献   

4.
Job rotation is an intuitive approach to distributing work to minimize muscular fatigue. The purpose of the current study was to evaluate rotation between lifting and gripping on muscle activity and effort. Ten male participants performed all 4 combinations of two 15 min tasks in 30 min trials split between separate days to prevent fatigue. The tasks of lifting a 12 kg box and gripping at 20% of maximum were performed 6 times per minute (5 s work: 5 s rest). Muscle activity (percentiles, gaps) and perceived effort were significantly affected by the task combinations. The forearm and upper erector spinae muscles did not benefit as greatly from rotating between lifting and gripping tasks as the lower erector spinae, deltoid or trapezius. In addition to gross task differences, overlaps in muscle activity between “low back” and “upper extremity” tasks must be considered when creating effective job rotation schemes.  相似文献   

5.
Much of the research on backpack design has been focused on spinal loading/biomechanics while the wearer is in a neutral/upright trunk posture, such as those employed by outdoor enthusiasts and schoolchildren. This research has led to some important harness design improvements that reduce trunk muscle exertions, fatigue and improve overall comfort. There are number of occupations, however, wherein workers wear back-mounted packs/devices (e.g. air tanks) while working in non-neutral trunk postures. The objective of the current study was to evaluate the effects of these non-neutral postures on biomechanical loading and then reconsider the backpack system design recommendations. Fifteen participants were asked to support a 18.2 kg load on their back while assuming static forward flexed postures of the torso (15 degrees , 30 degrees , 45 degrees , and 60 degrees of sagittal bend). The mass on the back was attached to the participant through two different harness mechanisms: a basic harness design (as seen on college student backpacks) and a more advanced design containing lateral stiffness rods and a weight-bearing hip belt (as seen on backpacks for hikers). While performing these static, posture maintenance tasks, the activation levels of the bilateral trapezius, erector spinae, and rectus abdominis were collected. Participants also provided subjective ratings of comfort. The results showed that there was a significant interaction between harness type and forward flexion angle for the trapezius and the erector spinae muscles. The normalized EMG for the trapezius muscles showed a 14% and 11% reduction in muscle activity at 15 degrees and 30 degrees , respectively, with the advanced design but these positive effects of the advanced design were not found at the greater flexion angles. Likewise the erector spinae muscles showed a 24% and 14% reduction in muscle activity at 15 degrees and 30 degrees , respectively, with the advanced design harness but these effects of the advanced design were not found at the greater forward flexion angles. The level of forward flexion angle affected the rectus abdominis muscle activity, but neither the harness type main effect nor the interaction of harness type and forward flexion angle was significant. The subjective survey results agreed with the EMG results and showed the advanced design harness was generally more comfortable with respect to the shoulder and low back areas. Collectively, the subjective and objective results show a significant improvement with the advanced harness system but also note an interesting interaction with degree of sagittal flexion, indicating a diminished effectiveness of the design improvements at forward flexed postures. Design criteria for harness systems in these forward flexed postures are discussed.  相似文献   

6.
The range of normalized electromyography (EMG) values when lifting and moving a 5.84 kg box was between 0.08 and 0.63. The right iliocostalis and the left erector spinae showed decreased muscle activity with increasing asymmetry. The right erector spinae and the left and the right external obliques showed significant increases in muscle activity at 90° asymmetry. The left and the right iliocostalis, the left erector spinae, and the right external oblique showed significant reductions in muscle activity for the sternum height when compared to the knuckle height. The right erector spinae exhibited a significant increase at reach height when compared to the knuckle height. The muscle activity for the knuckle lift was significantly lower than the floor lift. The average decrease in muscle activity was approximately 68%. Consequently, asymmetric lifting and moving tasks should be performed from a knuckle height to sternum height. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
This study was designed to investigate the effects of trunk motion under lifting conditions described by the Work Practices Guide for Manual Lifting (NIOSH, 1981). Eight male volunteers were used as subjects in this study. Three independent variables; lift style, load location and subjective lift velocity, were controlled under sagittally symmetric lifting conditions. Dependent variables consisted of trunk muscle electromyographic (EMG) activity, actual trunk velocity and load acceleration. There was no effect of lift style. However, as the trunk velocity increased, EMG activity increased within the lastissimus dorsi and rectus abdominus muscles but not within the erector spinae muscles. The erector spinae muscles, unlike the other muscles, was also unaffected by load location and load acceleration. These findings suggest ways in which lifting guides should be adjusted to account for the effects of dynamic motion.  相似文献   

8.
Jin S  Mirka GA 《Applied ergonomics》2011,42(6):867-872
Leaning against a stationary barrier during manual materials handling tasks is observed in many industrial environments, but the effects of this kinematic constraint on low back mechanics are unknown. Thirteen participants performed two-handed lifting tasks using both a leaning posture and no leaning posture while trunk kinematics, muscle activity and ground reaction force were monitored. Results revealed that lifting with the leaning posture required significantly less activity in erector spinae (26% vs. 36% MVC) and latissimus dorsi (8% vs. 14% MVC), and less passive tissue moment compared with the no leaning posture. Peak sagittal accelerations were lower when leaning, but the leaning posture also had significantly higher slip potential as measured by required coefficient of friction (0.05 vs. 0.36). The results suggested that the leaning lifting strategy provides reduced low back stress, but does so at the cost of increased slip potential.  相似文献   

9.
Although numerous studies have documented back muscle flexion-relaxation phenomenon (FRP) in standing postures, few studies have examined the FRP in various seated lumbar postures and individual flexibilities. This study, therefore, recruited 18 male students and assigned to low- and high-flexibility groups (9 in each). Activation of thoracic and lumbar erector spinae (ES) and lumbosacral angles were examined while participants sat in two postures (lordosis and kyphosis) and flexed their trunks at 15°, 30°, 45°, 60°, and maximum flexion. Results showed that kyphotic lumbar posture caused relatively low and unchangeable thoracic and lumbar ES activations, whereas lordotic lumbar posture engendered more contractive and varying thoracic and lumbar ES activations. Flexible participants exhibited higher thoracic ES activation than less flexible participants during lordotic sitting. Thoracic ES seemed to play a compensative role to stabilize the spine in the lordotic sitting posture, especially when the trunk was flexed over 45°. In lordotic lumbar posture, FRP occurred only in the lumbar ES; however, the activation and lumbosacral angles were still higher than those in kyphotic posture. The increased back muscle activation associated with lumbar lordosis may partially share the load on passive interspinous tissues, which are close to the discs during these flexed trunk positions.Relevance to industryThis study suggests that various lumbar postures and individual flexibilities may cause different FRP patterns when sitting. While performing seated tasks, people should exercise caution about the lumbar posture.  相似文献   

10.
This study was performed to provide information relating to the twisted posture being characteristic of the driver of an agricultural tractor working in the field. The relationship of trunk axial strength and muscle activity to trunk twisting angle of prerotation was determined and quantified. Differences between tractor drivers and office workers, and between the two directions of twisting action were also studied. Nine male tractor drivers and nine male office workers performed isometric maximum efforts at about −40, −20, 0, 20 and 40° of pre-set trunk twisting angles in both the clockwise and counterclockwise directions. Exerted torque, true angle of prerotation and muscle activity from left and right side of each of obliquus externus, rectus abdominis and erector spinae were measured simultaneously. The results showed that the subjects could exert the greatest torques when being prerotated in the opposite direction and the lowest torques when being prerotated in the same direction to the direction of exertion. The exerted torques were within the range of 65 – 145 Nm. There were large differences in obliquus externus and erector spinae activity due to the twisting direction. There were also changes in muscle activity from obliquus externus and rectus abdominis due to prerotation angle. The results raised questions concerning the involvement of the passive tissues and the use of deeper muscles during trunk axial rotation, which should be further investigated.  相似文献   

11.
Industrial assembly tasks often require awkward, sustained neck and/or shoulder postures that can lead to increased musculoskeletal discomfort and reduced productivity. The aim of this study was to investigate the effects of mirror and periscope visual aids as ergonomic interventions designed to eliminate awkward postures of the cervicobrachial region during assembly tasks. Participants simulated a simple assembly task by using a cordless screwdriver to drive screws into a pre-tapped aluminium block. Trials of 15 min were run for each of four distinct assembly workstation configurations: industry standard (in-line screwdriver, work at elbow height, no visual aid); pistol grip (pistol grip screwdriver, work at shoulder height, no visual aid); mirror (in-line screwdriver, work at elbow height, single mirror visual aid); and periscope (in-line screwdriver, work at elbow height, two-mirror visual aid system). Muscular activity, discomfort, body posture, productivity and operator subjective assessment were recorded to determine the effects of the visual aid interventions. The results show that when comparing the interventions to the industry standard condition, there was a 45% reduction in average cervical erector spinae activity, a 90% reduction in average neck flexion angle and a 72% reduction in neck discomfort with the interventions. When comparing these interventions to the pistol grip condition there was an 80% reduction in activity of the dominant side deltoid, a 92% reduction in shoulder flexion angle and an 81% decrease in shoulder discomfort with the interventions. Productivity was greatest in the industry standard configuration followed by the pistol grip (9% lower), the periscope (13% lower) and the mirror (23% lower) configurations. A follow-up study that compared the productivity of the periscope configuration with that of the industry standard configuration showed that within a 4-h work period this productivity differential decreased by over 33%.  相似文献   

12.
《Ergonomics》2012,55(2):215-228
Industrial assembly tasks often require awkward, sustained neck and/or shoulder postures that can lead to increased musculoskeletal discomfort and reduced productivity. The aim of this study was to investigate the effects of mirror and periscope visual aids as ergonomic interventions designed to eliminate awkward postures of the cervicobrachial region during assembly tasks. Participants simulated a simple assembly task by using a cordless screwdriver to drive screws into a pre-tapped aluminium block. Trials of 15 min were run for each of four distinct assembly workstation configurations: industry standard (in-line screwdriver, work at elbow height, no visual aid); pistol grip (pistol grip screwdriver, work at shoulder height, no visual aid); mirror (in-line screwdriver, work at elbow height, single mirror visual aid); and periscope (in-line screwdriver, work at elbow height, two-mirror visual aid system). Muscular activity, discomfort, body posture, productivity and operator subjective assessment were recorded to determine the effects of the visual aid interventions. The results show that when comparing the interventions to the industry standard condition, there was a 45% reduction in average cervical erector spinae activity, a 90% reduction in average neck flexion angle and a 72% reduction in neck discomfort with the interventions. When comparing these interventions to the pistol grip condition there was an 80% reduction in activity of the dominant side deltoid, a 92% reduction in shoulder flexion angle and an 81% decrease in shoulder discomfort with the interventions. Productivity was greatest in the industry standard configuration followed by the pistol grip (9% lower), the periscope (13% lower) and the mirror (23% lower) configurations. A follow-up study that compared the productivity of the periscope configuration with that of the industry standard configuration showed that within a 4-h work period this productivity differential decreased by over 33%.  相似文献   

13.
Many studies in backpack design have been focused on reducing trunk muscle activity and improving overall comfort while the wearers (college students and outdoor enthusiasts) were walking. However, little work has done on combining the vibration with harness system design. The purpose of the present study was to evaluate the effect of the vibration backpack harness system on trunk muscle activity and overall comfort in walking. There were four vibrators sewn in the four different positions of our harness system. Subjects were asked to support a load (20% body weight) on their backpack while performing 5-min walking trials on the treadmill (speed = 1.6 m/s) with different frequencies of vibration (0 Hz, 28 Hz, 35 Hz, 42 Hz). The objective measures of trunk muscle activity (electromyography) were obtained during the walking task. Subjects also were asked to complete subjective ratings of comfort. The results of the objective measures in this study had shown that the vibration function had a positive effect on reducing muscle activity for upper trapezius (UT), but not for erector spinae (ES). From the data of the two subjective surveys in our study, the comfort level of no-vibration state (0 Hz) was worse than vibration state (28 Hz, 35 Hz, 42 Hz) for both muscles, and when the frequency was 35 Hz, the comfort of the harness system was higher than the other three frequencies. The findings of the present study support that backpack with low frequency vibration has a positive effect on reducing trunk muscle activity and improving overall comfort level for wearers in walking.Relevance to industryObservations of present study is beneficial in assisting wearers to reduce muscle activity and improve overall comfort in walking according to the vibration backpack harness system. New backpack design criteria for harness systems are discussed to optimize production strategies. The wearers could be students, outdoor enthusiasts and old people.  相似文献   

14.
Lower back muscle forces in pushing and pulling   总被引:1,自引:0,他引:1  
K S Lee  D B Chaffin  A M Waikar  M K Chung 《Ergonomics》1989,32(12):1551-1563
In the investigation of lower back stress, the muscle forces of the erector spinae and the rectus abdominis are often calculated using the two-dimensional biomechanical model. These muscle forces are used to estimate the compressive forces at L5/S1 disc. This paper presents a study of the muscle forces predicted by a two-dimensional biomechanical model during pushing and pulling and myoelectric activity from the corresponding muscles. The goal was to investigate whether a simple two muscle torso model would reasonably estimate the muscle actions in pushing and pulling tasks. Six subjects participated in the experiment. EMG (rms) value was used as an indicator of muscle forces. The results show high correlation between the predicted muscle forces and the measured root-mean-square EMG values in trunk pushing and pulling (r2 = 0.93) and hand pushing and pulling (r2 = 0.96) in an erect posture with hips braced but low in hand pushing and pulling using a free posture (r2 = 0.37).  相似文献   

15.
Recent studies have suggested that ergonomic factors may contribute to risks experienced by overhead crane operators. However, there are few studies that provide a comprehensive overview of the physical demands of overhead crane operation. This study aimed to provide this information by quantifying muscular, postural, and upper limb movement demands of overhead crane operation including examination of muscle activation and trunk posture by task. Trunk posture, upper limb movement demands and muscle activation in the trunk and upper limbs were quantified for seven overhead crane operators. Trunk posture was quantified using trunk angle and joystick motion requirements were determined using camera data. Muscle activation was measured bilaterally using surface EMG for the upper trapezii, anterior deltoids, posterior deltoids, biceps brachii, triceps brachii, flexor carpi radialis and erector spinae. Lastly, joystick force requirements were assessed using a spring scale. High upper limb and trunk muscle loading were observed when compared to joystick use in other heavy machinery, in part due to the forward, trunk-flexed position required to adequately view the workspace, and the increased force requirements of the joysticks. Joystick input force requirements were 9–31 N for the right-hand joystick and 11–40 N for the left-hand joystick. Operators maintained a forward trunk flexion (>20°) for all subtasks which suggests that trunk posture might play a role in sustained trunk muscle activation. Results suggest that the primary issue with overhead crane cab operation is upper limb and trunk muscle loading. Results confirm the need to investigate muscle load reduction strategies such as camera systems to help reduce the need for trunk flexion. Other design modification suggestions include reducing the joystick input force and displacement requirements coupled with potentially distributing the machine functions more evenly across the right and left controllers.  相似文献   

16.
Twisted trunk postures during tractor driving are associated with low-back pain. The purposes of this study were to quantify the muscle activity as a function of twisting angle, to quantify the range of motion (ROM) during active trunk rotation and to determine whether there were any differences between tractor drivers and office workers and between twisting direction for these variables. The subjects performed exertions in a seated position, twisting from the neutral position to the end of the ROM. The results showed that external oblique and erector spinae had significantly different activation patterns depending on twisting direction. For the contralateral external oblique and the ipsilateral erector spinae, the muscle effort required to twist the trunk was low up to about 20° twisting angle, then the muscle effort needed to twist the trunk increased progressively. No significant differences due to occupation or twisting direction were found. The result implies that work in twisted trunk postures might be a risk factor for low-back pain.  相似文献   

17.
《Ergonomics》2012,55(2):127-138
The daily load of carrying schoolbags is influenced by the mode of carriage. Electromyographic (EMG) activity from rectus abdominis and erector spinae was recorded bilaterally in five static conditions: no bag; shoulder bag; backpack; front pack; double pack. Nineteen students carried a load of 15% of their body weight. A double pack, with the load equally distributed in a front and a backpack, showed no significant differences in EMG activity compared with unloaded standing. The activity levels of erector spinae significantly decreased while carrying a backpack and increased with a shoulder bag and a front pack. Rectus abdominis revealed significantly higher EMG levels in the backpack trial. Asymmetrical activity between the right and the left part of the back muscles was clearly observed while carrying a shoulder bag with the weight at the right side of the body. The abdominal muscles revealed a slightly significant asymmetry for the shoulder bag and, surprisingly, also for the backpack. These findings suggest that the physical stresses associated with carrying book bags can be minimized by the design of a double pack. Asymmetry in muscle activity may indicate a failure of trunk stabilization and contribute to the development back pain.  相似文献   

18.
Motmans RR  Tomlow S  Vissers D 《Ergonomics》2006,49(2):127-138
The daily load of carrying schoolbags is influenced by the mode of carriage. Electromyographic (EMG) activity from rectus abdominis and erector spinae was recorded bilaterally in five static conditions: no bag; shoulder bag; backpack; front pack; double pack. Nineteen students carried a load of 15% of their body weight. A double pack, with the load equally distributed in a front and a backpack, showed no significant differences in EMG activity compared with unloaded standing. The activity levels of erector spinae significantly decreased while carrying a backpack and increased with a shoulder bag and a front pack. Rectus abdominis revealed significantly higher EMG levels in the backpack trial. Asymmetrical activity between the right and the left part of the back muscles was clearly observed while carrying a shoulder bag with the weight at the right side of the body. The abdominal muscles revealed a slightly significant asymmetry for the shoulder bag and, surprisingly, also for the backpack. These findings suggest that the physical stresses associated with carrying book bags can be minimized by the design of a double pack. Asymmetry in muscle activity may indicate a failure of trunk stabilization and contribute to the development back pain.  相似文献   

19.
Sit-stand stools are available for use in industrial settings, but there is a lack of quantitative evidence demonstrating benefits for lower limb, back and/or neck/shoulder outcomes. In this paper we describe an experiment conducted to compare and contrast posture and time-related differences in muscular and vascular outcomes during 34 min of manual repetitive work performed in either standing or sit-standing work posture. We measured vascular parameters in the lower limbs, and muscular parameters in the trunk and neck/shoulder, and discomfort in the three regions as participants accomplished a repetitive box-folding task. Results show that blood flow in the foot (p = 0.022) and ankle mean arterial pressure (p < 0.001) were greater during standing. Left gluteus medius and external oblique activation was higher during standing, while sit-standing work resulted in higher levels of co-activation between the left erector spinae and external oblique muscle pair (p = 0.026). Neck/shoulder muscle activity was not significantly different between the conditions. Reported discomfort did not differ significantly for the trunk and neck/shoulder region, but standing resulted in higher level of reported discomfort in the lower limb. The sit-stand posture used in this experiment appears to prevent the undesirable lower limb outcomes associated with static standing work posture.Relevance to industryThis work demonstrates quantitative evidence to support the potential use of a sit-stand stool for industrial work operations, at least over relatively short durations.  相似文献   

20.
Background and objectives: Sudden release of load during lifting threatens postural stability and is countered by trunk muscle response, which can generate high loads on the spine, and may be a cause of tissue injury. The postural threat following sudden release and the consequent muscular response are likely to depend on the posture at the time of release. This study investigates the effects of sudden release of load at two release heights of one- and three-quarters of the knee to shoulder distance during stoop lifting.

Methods: Ten normal southern Chinese male volunteers were subject to sudden release of 20, 40, 60 and 80 N loads during stoop lifting trials. The release was randomly selected to be on the third, fourth or fifth cycle of a trial and was triggered at heights of one- and three-quarters of the total knee to shoulder lifting distance. The subjects stood on a force platform to allow the postural disturbance to be recorded by monitoring the center of pressure (COP), and electromyographic (EMG) data were collected from the rectus abdominus, internal oblique, external oblique, erector spinae and latissimus dorsi muscle groups.

Results: The COP excursion moved closer to the posterior limit of stability with increasing release load, and this effect was significantly more marked for release from the lower of the two heights. The minimum posterior COP separation from the posterior limit of stability was significantly less for the lower release height at all loads (p<0.001 in all cases). EMG data showed that the agonist–antagonist co-contraction durations were higher for the lower release height, and unlike sudden release from the higher level, showed a significant increase with increasing load.

Conclusions: Sudden release at lower release height during stoop lifting results in significantly greater postural disturbance and spinal loading. The mean load predicted to result in fall or stumble at the lower release height (133 N) is significantly less than that predicted at the higher of the two release heights (245 N). A more marked effect of release load is also seen in the postural disturbance and trunk muscle co-contraction time for the lower release height, and particular care should therefore be taken when handling potentially unstable loads under these conditions. If the security of the load cannot be guaranteed, storage at a higher level may reduce the risk of injury due to sudden release of the load.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号