首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wool handling is an important rural occupation where workers process 200 or more fleeces daily, separating them into various quality components. Loads and postures they experience carry substantial risk of low back pain (LBP). Although a formal skill training structure exists, interaction with loads and LBP is unknown. We examined whether skill and LBP influenced trunk postures and loads of 60 wool handlers representing 3 skill levels. LBP prevalence ranged from 20% for junior (lowest skill) to 45% for open class (highest skill) wool handlers. Open class wool handlers demonstrated increased lateral bend and more axially twisted postures, generating greater medio-lateral shear forces and lateral bend and axial twist moments. LBP was associated with open class wool handlers spending more time in severe axially twisted postures. These findings suggest that skill-based training needs to be reviewed to reduce the quantity of axially twisted posture which may help reduce the prevalence of LBP in this workforce.  相似文献   

2.
Sheep shearers are known to work in sustained flexed postures and have a high prevalence of low back pain (LBP). As sustained posture and spinal movement asymmetry under substantial loads are known risk factors for back injury our aim was to describe the 3D spinal movement of shearers while working. We hypothesised that thoraco-lumbar and lumbo-sacral movement would be tri-axial, asymmetric, and task specific. Sufficient retro-reflective markers were placed on the trunk of 12 shearers to define thoraco-lumbar and lumbo-sacral 3D motion during three tasks. Thoraco-lumbar movement consistently involved flexion, left lateral flexion, and right rotation. Lumbo-sacral movement consistently involved right lateral flexion in flexion with minimal rotation. Shearers therefore work in sustained spinal flexion where concurrent, asymmetric spinal movements into both lateral flexion and rotation occur. These asymmetric movements combined with repetitive loading may be risk factors leading to the high incidence of LBP in this occupational group.  相似文献   

3.
《Ergonomics》2012,55(10):968-981
Sheep shearing requires shearers to adopt sustained flexed postures for prolonged periods of time and has been associated with an increased risk of developing low back pain (LBP). However, these postures do not generally result in acute compressive values at L4/L5 exceeding the action limit proposed by the National Institute for Occupational Safety and Health, despite the high prevalence of LBP in this occupation. Therefore, it may not be peak loading that is responsible for LBP in this occupation but instead it may be the effect of cumulative loading over the course of a workday. The primary purpose of this research was to quantify the low back cumulative load exposure in 12 sheep shearers with and without the aid of a commercial trunk harness. Results revealed a significant reduction in the magnitude of cumulative compression with the use of the trunk harness and therefore its use may potentially reduce the risk of injury. The use of the trunk harness also reduced the time spent in axially twisted postures, which have been associated with LBP. However, using the trunk harness also resulted in increased time spent in laterally bent postures, which has been associated with increased risk for pain and injury.  相似文献   

4.
Sheep shearing requires shearers to adopt sustained flexed postures for prolonged periods of time and has been associated with an increased risk of developing low back pain (LBP). However, these postures do not generally result in acute compressive values at L4/L5 exceeding the action limit proposed by the National Institute for Occupational Safety and Health, despite the high prevalence of LBP in this occupation. Therefore, it may not be peak loading that is responsible for LBP in this occupation but instead it may be the effect of cumulative loading over the course of a workday. The primary purpose of this research was to quantify the low back cumulative load exposure in 12 sheep shearers with and without the aid of a commercial trunk harness. Results revealed a significant reduction in the magnitude of cumulative compression with the use of the trunk harness and therefore its use may potentially reduce the risk of injury. The use of the trunk harness also reduced the time spent in axially twisted postures, which have been associated with LBP. However, using the trunk harness also resulted in increased time spent in laterally bent postures, which has been associated with increased risk for pain and injury.  相似文献   

5.
Previous research has classified the occupation of sheep shearing as heavy work where shearers flex their spine and hips for long periods of time, handle awkward loads and expend high amounts of energy. The aim of this research was to investigate the magnitude of spinal forces produced during the shearing phase of the work and to determine whether the use of a commercially available back support harness would reduce these forces. Following discussion on task complexity and risk of back injury with senior shearing instructors, three component tasks of the shearing phase were identified as posing high risk of injury and were prioritized for primary analysis. Although the dragging out of a sheep in preparation for shearing and an unexpected loss of animal control were also identified as being of high risk, technological and instrumentation difficulties precluded their analysis. Twelve experienced shearers were videotaped while shearing with and without the use of a back harness. Surface mounted retro-reflective markers placed on the trunk defined three linked segments: Pelvis, Lumbar and Head, Arms, and Upper Trunk (HAUT). A 3D, link segment, top down, inverse dynamics approach was used to describe the motion and to estimate forces involved during the identified tasks of shearing. The spinal force/time profiles of this sample of shearers demonstrated large compressive and shear forces for all three tasks that are close to the NIOSH and University of Waterloo action limits for compressive and shear forces respectively (McGill 1997, Yingling and McGill 1999, Marras 2000). The use of the back support harness reduced these forces by substantial and statistically significant amounts. This effect was consistent across all three tasks. The results of this study demonstrate the production of high levels of compressive and shear forces within the spine of shearers during the three shearing tasks studied and that the use of a back support harness can substantially reduce these forces. Therefore the use of a back harness may reduce the cumulative load on the spine during shearing thereby moderating damage to the articular structures. However it is not known whether the harness would protect the spine from a sudden or unexpected force.  相似文献   

6.
《Ergonomics》2012,55(11):1208-1225
Previous research has classified the occupation of sheep shearing as heavy work where shearers flex their spine and hips for long periods of time, handle awkward loads and expend high amounts of energy. The aim of this research was to investigate the magnitude of spinal forces produced during the shearing phase of the work and to determine whether the use of a commercially available back support harness would reduce these forces. Following discussion on task complexity and risk of back injury with senior shearing instructors, three component tasks of the shearing phase were identified as posing high risk of injury and were prioritized for primary analysis. Although the dragging out of a sheep in preparation for shearing and an unexpected loss of animal control were also identified as being of high risk, technological and instrumentation difficulties precluded their analysis. Twelve experienced shearers were videotaped while shearing with and without the use of a back harness. Surface mounted retro-reflective markers placed on the trunk defined three linked segments: Pelvis, Lumbar and Head, Arms, and Upper Trunk (HAUT). A 3D, link segment, top down, inverse dynamics approach was used to describe the motion and to estimate forces involved during the identified tasks of shearing. The spinal force/time profiles of this sample of shearers demonstrated large compressive and shear forces for all three tasks that are close to the NIOSH and University of Waterloo action limits for compressive and shear forces respectively (McGill , Yingling and McGill , Marras ). The use of the back support harness reduced these forces by substantial and statistically significant amounts. This effect was consistent across all three tasks. The results of this study demonstrate the production of high levels of compressive and shear forces within the spine of shearers during the three shearing tasks studied and that the use of a back support harness can substantially reduce these forces. Therefore the use of a back harness may reduce the cumulative load on the spine during shearing thereby moderating damage to the articular structures. However it is not known whether the harness would protect the spine from a sudden or unexpected force.  相似文献   

7.
《Ergonomics》2012,55(12):1576-1583
Sheep shearing is the most demanding occupation in the wool harvesting industry and is known to have a high prevalence of low back pain. While use of a commercially available trunk harness reduces load on the low back, the extreme trunk flexion associated with shearing still remains. A novel, upright posture shearing technique has been designed to allow a more neutral spine posture. This study assessed this upright technique and found significant reductions in both trunk flexion and cumulative low back loading when compared to either the traditional method or the use of the trunk harness. Moments about the shoulder tended to be higher while using the upright shearing technique and further investigation of shoulder kinetics will be required to assess whether this creates injury risk to the upper extremity. Despite increased shoulder moments, the reduction in flexion and cumulative loading with the use of the upright technique has the potential to reduce risk of low back pain among shearers.  相似文献   

8.
Traditional sheep shearing methods require workers to adopt postures where the trunk is approximately horizontal and held in that position against gravity for long periods of time. The objective of this study was to examine the biomechanics of stooped shearing techniques and to compare the effectiveness of a new sheep manipulator in reducing the frequency of these postures and the changes in low back forces and electromyographic (EMG) activity. Five male shearers were filmed using three video cameras and EMG and three-dimensional (3D) kinematic data were derived during seven segments of the shearing action. Kinematic data were used to calculate the L5/S1 compressive and shear forces using the 3D Static Strength Prediction Program(TM). Results showed the low back forces in stooped shearing were typically between 2200 and 3000N. Also, the sheep manipulator effectively allowed the shearers to maintain a more upright posture (mean trunk angle >65 degrees) which decreased the compressive (maximum <1350N) and shear (maximum <260N) forces at L5/S1.  相似文献   

9.
Sheep shearing is a very physically demanding occupation, especially on the low back, such that many commercial harnesses have been developed to help reduce the load on the back. Such harnesses have been shown to significantly reduce peak and cumulative low back loads; however, the effect that these harnesses have on the shoulders, which are also highly involved during sheep shearing, has not been previously examined. The purpose of this study was to examine the shoulder postures and cumulative shoulder moments of 12 New Zealand sheep shearers. The use of the trunk harness reduced the percentage of time spent in shoulder flexion greater than 90 degrees and the time spent in shoulder abduction greater than 45 degrees as well as reduced the cumulative net joint flexor, abductor, and adductor shoulder moments by a minimum of 21%, 14%, and 42%, respectively. Therefore, the use of a commercial trunk harness to reduce low back injury may also help to reduce the risk of shoulder injury while sheep shearing.  相似文献   

10.
This study evaluated spinal loads associated with lifting and hanging heavy mining cable in a variety of postures. This electrical cable can weigh up to 10 kg per metre and is often lifted in restricted spaces in underground coal mines. Seven male subjects performed eight cable lifting and hanging tasks, while trunk kinematic data and trunk muscle electromyograms (EMGs) were obtained. The eight tasks were combinations of four postures (standing, stooping, kneeling on one knee, or kneeling on both knees) and two levels of cable load (0 N or 100 N load added to the existing cable weight). An EMG-assisted model was used to calculate forces and moments acting on the lumbar spine. A two-way split-plot ANOVA showed that increased load (p < 0.05) and changes in lifting posture (p < 0.05) independently affected trunk muscle recruitment and spinal loading. The increase in cable load resulted in higher EMG activity of all trunk muscles and increased axial and lateral bending moments on the spine (p < 0.05). Changes in posture caused more selective adjustments in muscle recruitment and affected the sagittal plane moment (p < 0.05). Despite the more selective nature of trunk EMG changes due to posture, the magnitude of changes in spinal loading was often quite dramatic. However, average compression values exceeded 3400 N for all cable lifting tasks.  相似文献   

11.
《Ergonomics》2012,55(5):380-398
This study evaluated spinal loads associated with lifting and hanging heavy mining cable in a variety of postures. This electrical cable can weigh up to 10 kg per metre and is often lifted in restricted spaces in underground coal mines. Seven male subjects performed eight cable lifting and hanging tasks, while trunk kinematic data and trunk muscle electromyograms (EMGs) were obtained. The eight tasks were combinations of four postures (standing, stooping, kneeling on one knee, or kneeling on both knees) and two levels of cable load (0 N or 100 N load added to the existing cable weight). An EMG-assisted model was used to calculate forces and moments acting on the lumbar spine. A two-way split-plot ANOVA showed that increased load (p<0.05) and changes in lifting posture (p<0.05) independently affected trunk muscle recruitment and spinal loading. The increase in cable load resulted in higher EMG activity of all trunk muscles and increased axial and lateral bending moments on the spine (p<0.05). Changes in posture caused more selective adjustments in muscle recruitment and affected the sagittal plane moment (p<0.05). Despite the more selective nature of trunk EMG changes due to posture, the magnitude of changes in spinal loading was often quite dramatic. However, average compression values exceeded 3400 N for all cable lifting tasks.  相似文献   

12.
It has been recently reported that both dynamic movement characteristics, as well as the duration of postures adopted during work, are important in the development of low back pain (LBP). This paper presents a video-based posture assessment method capable of measuring trunk angles and angular velocities in industrial workplaces. The inter-observer reliability, system accuracy, and the relationship of the measured exposures to the reporting of low back pain are reported. The video analysis workstation consisted of a desktop computer equipped with digital video capture and playback technology, a VCR, and a computer game type joystick. The operator could then use a joystick to track trunk flexion and lateral bending during computer-controlled video playback. The joystick buttons were used for binary input of twisting. The inter-observer reliability for peak flexion and percentage of time spent in posture category variables were excellent (ICC>0.8). Lower reliability levels were observed for peak and average velocity and movement related variables. The video analysis system time series data showed very high correlation to the criterion optoelectronic imaging system (r=0.92). Root mean square errors averaged 5.8° for the amplitude probability distribution function data. Trunk flexion variables including peak level, peak velocity, average velocity indicators, and percent time in flexion category indicators all showed significant differences between cases and controls in the epidemiological study. A model consisting of the measures peak trunk flexion, percent time in lateral bend and average lateral bending velocity emerged after multivariable analysis for relationship to low back pain.

Relevance to industry

Risk of injury for the low back is multifactorial. The trunk position and movement velocity are emerging as important parameters. This analysis confirms the importance of these factors and demonstrates the utility of a video-based method to measure them in industrial settings.  相似文献   


13.
Many baristas complain of low back pain (LBP) and upper extremity discomfort while at work. This study documented the prevalence of LBP and shoulder pain, via questionnaire, among a population of baristas to determine whether cumulative low back loads and shoulder moments are associated with pain reporting. Fifty-nine baristas completed the questionnaire; ten were also video-recorded for biomechanical analysis while making espresso beverages and cumulative and peak low back loads and shoulder moments were calculated. Seventy-three percent of those who completed the questionnaire reported having experienced LBP, and half attributed this pain to their job as a barista. Furthermore, 68% reported having experienced shoulder pain and half also attributed this pain to their job. Those who suffered from LBP had higher peak low back compression and those with shoulder pain had, in general, higher moments about their dominant shoulder.  相似文献   

14.
《Ergonomics》2012,55(9):1108-1116
Considerable effort has been spent evaluating aspects of low back injury risk in nursing yet comprehensive evaluation of all work tasks has been limited. The purpose of this study was to evaluate peak and cumulative lumbar spine loads experienced by personal support workers. A total of 20 female long-term care workers were observed and had trunk posture monitored via an inclinometer throughout their shift. When adjusted for an 8-h workday, workers experienced cumulative loads of 21.3 ± 4.6 MNs, 1.8 ± 0.6 MNs and 2.9 ± 1.4 MNs for compression, lateral and anterior shear, respectively. Patient care, unloaded standing, walking and miscellaneous tasks accounted for almost 80% of cumulative compression, while lifts and transfers accounted for less than 10%. Mechanical lift assists reduced peak loads and contributed minimally to cumulative loading. These findings suggest that both peak and cumulative spine loads should be considered when evaluating injury risk in the nursing profession.

Statement of Relevance: This study has shown that tasks other than patient transfers and lifts are important in the assessment of low back injury risk in nurses. The method developed is a relatively straightforward approach that can be used to estimate peak and cumulative spine load to provide insight to risk of injury in many occupational settings.  相似文献   

15.
With the recent attention to ‘sitting disease’, health practitioners and scientists are promoting standing in the workplace to decrease sedentary time, despite a high prevalence of low back pain (LBP) development during prolonged standing. The purpose of this study was to assess how a seated break inserted between bouts of prolonged standing would influence LBP development, posture and movement. A total of 20 participants stood for 45 minutes, sat for 15 minutes and repeated this sequence while lumbar and thoracic angles were measured, and LBP visual analogue scale reports were taken. Of the sample, 55% participants reported LBP in standing. A stand to sit ratio of 3:1 did not provide lasting recovery of LBP from standing and pain developers utilised a limited range of their lumbar spine angle and increased thoracic extension, resulting in static postures that caused tissue aggravation that was not resolved after 15 minutes of sitting. Prolonged standing in the workplace has the potential to result in LBP for some workers and alternate ways to reduce sedentary time should be investigated.  相似文献   

16.
Callaghan JP  McGill SM 《Ergonomics》2001,44(3):280-294
The aim was to examine lumbar spine kinematics, spinal joint loads and trunk muscle activation patterns during a prolonged (2 h) period of sitting. This information is necessary to assist the ergonomist in designing work where posture variation is possible -- particularly between standing and various styles of sitting. Joint loads were predicted with a highly detailed anatomical biomechanical model (that incorporated 104 muscles, passive ligaments and intervertebral discs), which utilized biological signals of spine posture and muscle electromyograms (EMG) from each trial of each subject. Sitting resulted in significantly higher (p<0.001) low back compressive loads (mean +/- SD 1698 +/- 467 N) than those experienced by the lumbar spine during standing (1076 +/- 243 N). Subjects were equally divided into adopting one of two sitting strategies: a single 'static' or a 'dynamic' multiple posture approach. Within each individual, standing produced a distinctly different spine posture compared with sitting, and standing spine postures did not overlap with flexion postures adopted in sitting when spine postures were averaged across all eight subjects. A rest component (as noted in an amplitude probability distribution function from the EMG) was present for all muscles monitored in both sitting and standing tasks. The upper and lower erector spinae muscle groups exhibited a shifting to higher levels of activation during sitting. There were no clear muscle activation level differences in the individuals who adopted different sitting strategies. Standing appears to be a good rest from sitting given the reduction in passive tissue forces. However, the constant loading with little dynamic movement which characterizes both standing and sitting would provide little rest/change for muscular activation levels or low back loading.  相似文献   

17.
A mathematical model was developed for estimating the net present value (NPV) of the cash flow resulting from an investment in an intervention to prevent occupational low back pain (LBP). It combines biomechanics, epidemiology, and finance to give an integrated tool for a firm to use to estimate the investment worthiness of an intervention based on a biomechanical analysis of working postures and hand loads. The model can be used by an ergonomist to estimate the investment worthiness of a proposed intervention. The analysis would begin with a biomechanical evaluation of the current job design and post-intervention job. Economic factors such as hourly labor cost, overhead, workers' compensation costs of LBP claims, and discount rate are combined with the biomechanical analysis to estimate the investment worthiness of the proposed intervention. While this model is limited to low back pain, the simulation framework could be applied to other musculoskeletal disorders. The model uses Monte Carlo simulation to compute the statistical distribution of NPV, and it uses a discrete event simulation paradigm based on four states: (1) working and no history of lost time due to LBP, (2) working and history of lost time due to LBP, (3) lost time due to LBP, and (4) leave job. Probabilities of transitions are based on an extensive review of the epidemiologic review of the low back pain literature. An example is presented.  相似文献   

18.
《Ergonomics》2012,55(3):280-294
The aim was to examine lumbar spine kinematics, spinal joint loads and trunk muscle activation patterns during a prolonged (2 h) period of sitting. This information is necessary to assist the ergonomist in designing work where posture variation is possible—particularly between standing and various styles of sitting. Joint loads were predicted with a highly detailed anatomical biomechanical model (that incorporated 104 muscles, passive ligaments and intervertebral discs), which utilized biological signals of spine posture and muscle electromyograms (EMG) from each trial of each subject. Sitting resulted in significantly higher (p< 0.001) low back compressive loads (mean±SD 1698±467 N) than those experienced by the lumbar spine during standing (1076±243 N). Subjects were equally divided into adopting one of two sitting strategies: a single ‘static’ or a ‘dynamic’ multiple posture approach. Within each individual, standing produced a distinctly diVerent spine posture compared with sitting, and standing spine postures did not overlap with flexion postures adopted in sitting when spine postures were averaged across all eight subjects. A rest component (as noted in an amplitude probability distribution function from the EMG) was present for all muscles monitored in both sitting and standing tasks. The upper and lower erector spinae muscle groups exhibited a shifting to higher levels of activation during sitting. There were no clear muscle activation level diVerences in the individuals who adopted diVerent sitting strategies. Standing appears to be a good rest from sitting given the reduction in passive tissue forces. However, the constant loading with little dynamic movement which characterizes both standing and sitting would provide little rest/change for muscular activation levels or low back loading.  相似文献   

19.
《Ergonomics》2012,55(8):1289-1310
This article describes investigations of dynamic biomechanical stresses associated with lifting in stooping and kneeling postures. Twelve subjects volunteered to participate in two lifting experiments each having two levels of posture (stooped or kneeling), two levels of lifting height (350 or 700 mm), and three levels of weight (15,20, or 25 kg). One study examined sagitally symmetric lifting, the other examined an asymmetric task. In each study, subjects lifted and lowered a box every 10 s for a period of 2 min in each treatment combination. Electromyography (EMG) of eight trunk muscles was collected during a specified lift. The EMG data, normalized to maximum extension and flexion exertions in each posture, was used to predict compression and shear forces at the L3 level of the lumbar spine. A comparison of symmetric and asymmetric lifting indicated that the average lumbar compression was greater in sagittal plane tasks; however, both anterior-posterior and lateral shear forces acting on the lumbar spine were increased with asymmetric lifts. Analysis of muscle recruitment indicated that the demands of lifting asymmetrically are shifted to ancillary muscles possessing smaller cross-sectional areas, which may be at greater risk of injury during manual materials handling (MMH) tasks. Model estimates indicated increased compression when kneeling, but increased shear forces when stooping. Increasing box weight and lifting height both significantly increased compressive and shear loading on the lumbar spine. A multivariate analysis of variance (MANOVA) indicated complex muscle recruitment schemes—each treatment combination elicited a unique pattern of muscle recruitment. The results of this investigation will help to evaluate safe loads for lifting in these restricted postures.  相似文献   

20.
《Ergonomics》2012,55(11):1402-1418
A relationship between low back pain (LBP) and prolonged standing or prolonged sitting at work has not been clearly shown, despite its biological plausibility. Because sitting and standing postures vary as to duration and freedom to alternate postures, and standing postures vary as to mobility, associations between specific working postures and LBP were explored using multiple logistic regression. Associations between work factors and self-reported LBP during the previous 12 months that interfered with usual activities were examined among 4493 standing workers and 3237 sitting workers interviewed in the 1998 Quebec Health and Social Survey; 24.5% reported significant LBP. Since the same conditions can correspond to different physiological demands for sitting compared with standing workers, analyses were performed separately for the two groups. Standing without freedom to sit was associated with LBP. Different occupational physical and psychosocial factors were associated with LBP in sitting compared with standing populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号